TRANSIC100LP
LASER OXYGEN TRANSMITTER
The good nose for oxygen

Gas transmitter
Process parameters are best measured where they are relevant and present in an unaltered state – directly in the process. "In-situ measuring technology" or "Inline measuring" are the phrases used. The process parameters are determined under process conditions.

Simple

The TRANSIC100LP is an oxygen transmitter that measures in-situ or "inline". The sensor is designed as a measuring probe. This ensures that the lens system in the transmitter is always optimally aligned and installation is very simple. The measuring task can be implemented with little need for additional technical aids. Costly sampling and gas conditioning can be omitted in many cases.

Consistent

The TRANSIC100LP is the consistent implementation of a gas analyzer in the form of a field device: it combines the advantages of oxygen laser spectroscopy with the easy handling of a transmitter. Its transmitter design offers the following:

- Very easy to install
- Uncomplicated transmitter configuration
- Security with password protection for configuration level
- Clear connection concept

Fast

For the operation of the system it is decisive to always have the relevant process parameters in view. Direct measurement in the process is characterized by an extremely low response time. When the flow reaches the sensor of the TRANSIC100LP, the measured value is displayed without any significant delay.

Low maintenance

The TRANSIC100LP is based on the measurement principle of Tunable Diode Laser Spectroscopy (TDLS) and is a purely optical sensor. The TRANSIC100LP measures a natural characteristic of the oxygen directly independent of location and time. The measurement is virtually free of temporary drift. The gas transmitter has no mechanical components and is wear-free. Omitting sampling and gas conditioning means no operating or maintenance costs occur. SICK recommends calibration intervals of 12 months. Measurement runs at all times without using any consumables.
With exact laser technology

The TDLS Tunable Diode Laser Spectroscopy is primarily used in high-end gas analyzers and is characterized by its highly selective measurement capability. The oxygen properties are used for O₂ measurement: That means O₂ atoms in the near infrared range are stimulated at specific wavelengths. A laser diode modulates the radiation precisely over an absorption peak. The high-energy radiation transfers energy to the O₂ atoms and the signals becomes weaker. In the measuring probe, the laser beam hits the O₂ atoms and is weakened according to the concentrations of oxygen present there. A receiver measures the intensity of the arriving radiation and accurately determines the absorption. One distinct advantage of laser spectroscopy is its insensitivity to possible interference. For O₂ in particular, there is no absorption of other gases in the range of sampled absorption peaks.

Extended application area

The sensor optics can become contaminated in certain processes. Two filters are available to prevent this happening: a stainless steel filter to protect against soiling, and a PTFE filter for use in processes in which smaller particles or droplets can occur. If the process does not permit direct in-situ/inline measurement due to an increased pressure or temperature range, a sample gas cell provides a simple way to implement an extractive installation.
An explosion can only occur when all three elements (fuel, an ignition source and oxidant), referred to as the explosion triangle, are present. The primary explosion protection prevents the simultaneous occurrence of a fuel and an oxidant. If flammable substances cannot be avoided, no oxidants may be present.

The secondary explosion protection describes how to avoid ignition sources. Various applicable laws, standards and regulations have become established throughout the world. For example the European Directive 94/9/EC (European Commission, 1994) for devices and 1999/92/EC (European Commission, 1999) for operation (ATEX Directive) and the harmonized standards, or NEC 500 and NEC 505 in the USA.

For use in potentially explosive atmospheres, one version of the TRANSIC100LP approved by the Factory Mutual (FM) and one approved according to IECEX/ATEX are available.

Safe zone

Gas zone 1/2

Dust zone 21/22

Gas: II 2 G Ex e mb [ib] IIB T4 Gb

Dust: II 2 D Ex tb [ib] IIIIC T85°C Db

Class I, Division 2
Groups A–D
Temperature Class T4

Class I, Division 1 and 2
Groups A–D
Temperature Class T4

Gas zone 0
Dust zone 21

Gas: II 1 G Ex op is IIB T4 Ga
Dust: II 2 D Ex ib tb IIIIC T85°C Db

Gas: II 2 G Ex ib IIB T4 Gb
Dust: II 2 D Ex ib tb IIIIC T85°C Db
Product description
Measuring the oxygen in the process can be quite simple. The TRANSIC100LP from SICK is the rugged transmitter that uses Tunable Diode Laser Spectroscopy (TDLS) to measure O₂ reliably. A technology more common in the world of high-tech analysis, is now being used in a field instrument: at an attractive price, easy installation, a long life, low maintenance and suitable for use in potentially explosive atmospheres.

At a glance
- O₂ transmitter based on high-performance laser spectroscopy (TDLS)
- For use in potentially explosive atmospheres (FM, ATEX and IECEX approvals)
- Measurement directly in-situ or extractive using a sample gas cell (option)

Your benefits
- Measures in real-time directly in the process
- Easy installation and operation
- Self-diagnostics with maintenance display
- Low requirements for gas conditioning
- Designed for heavy-duty industrial applications
- Compact design and easy to operate
- Long-term stability
- No moving parts
- Low operating costs: no consumables and no purging gas consumption
- Rugged: reliable measurement even in contaminated gases

Additional information
Fields of application 7
Detailed technical data 7
Ordering information 9
Type code 9
Dimensional drawings 12
Connection types 17

For more information, just enter the link and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

www.mysick.com/en/TRANSIC100LP
Fields of application

- Monitoring of inert gas blanketing in tanks and vessels
- \(\text{O}_2 \) measurement in process gases
- Measurements in potentially explosive atmospheres
- Process monitoring in fermenters and bioreactors
- Room air monitoring
- Quality monitoring for the production of technical gases
- Replacement of extractive paramagnetic oxygen analyzers and electrochemical cells

Detailed technical data

The exact device specifications and performance data of the product may deviate from the information provided here, and depend on the application in which the product is being used and the relevant customer specifications.

TRANSIC100LP system

<table>
<thead>
<tr>
<th>Measured values</th>
<th>(\text{O}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement principles</td>
<td>Diode laser spectroscopy (TDLS)</td>
</tr>
<tr>
<td>Measuring ranges</td>
<td>(\text{O}_2) 0 ... 5 Vol.-% / 0 ... 100 Vol.-%</td>
</tr>
<tr>
<td>Response time</td>
<td>(\leq) 10 s</td>
</tr>
<tr>
<td>Accuracy</td>
<td>(\leq 0.2) Vol.-%</td>
</tr>
<tr>
<td>Zero point drift</td>
<td>(\pm 0.1) Vol.% per year</td>
</tr>
<tr>
<td>Process temperature</td>
<td>(-20 , ^\circ\text{C} \ldots +80 , ^\circ\text{C})</td>
</tr>
<tr>
<td>Process pressure</td>
<td>800 hPa ... 1,400 hPa</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>(-20 , ^\circ\text{C} \ldots +60 , ^\circ\text{C})</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(-30 , ^\circ\text{C} \ldots +80 , ^\circ\text{C})</td>
</tr>
<tr>
<td>Ex-approvals</td>
<td></td>
</tr>
<tr>
<td>IECEx</td>
<td>Sender/receiver unit: II 1/2G Ex ib IIB T4 Gb; II 2D Ex ib tb IIIC T85 °C Db</td>
</tr>
<tr>
<td>ATEX</td>
<td>Measuring probe: II 1/2G Ex op is IIB T4 Ga; II 2D Ex ib tb IIIC T85 °C Db</td>
</tr>
<tr>
<td>Power supply: II 2G Ex e mb [ib] IIB T4 Gb; II 2D Ex tb [ib] IIIC T85 °C Db</td>
<td></td>
</tr>
<tr>
<td>NEC/CEC (US/CA)</td>
<td>Sender/receiver unit: II 1/2G Ex ib IIB T4 Gb; II 2D Ex ib tb IIIC T85 °C Db</td>
</tr>
<tr>
<td>ATEX</td>
<td>Measuring probe: II 1/2G Ex op is IIB T4 Ga; II 2D Ex ib tb IIIC T85 °C Db</td>
</tr>
<tr>
<td>Power supply: II 2G Ex e mb [ib] IIB T4 Gb; II 2D Ex tb [ib] IIIC T85 °C Db</td>
<td></td>
</tr>
<tr>
<td>Electrical safety</td>
<td>CE, FM</td>
</tr>
<tr>
<td>Enclosure rating</td>
<td>IP 66</td>
</tr>
<tr>
<td>Analog outputs</td>
<td>1 output:</td>
</tr>
<tr>
<td></td>
<td>0/4 ... 20 mA, 500 Ω</td>
</tr>
<tr>
<td></td>
<td>1 output:</td>
</tr>
<tr>
<td></td>
<td>0/4 ... 20 mA, 200 Ω</td>
</tr>
<tr>
<td></td>
<td>Only for ATEX/IECEx version TRANSIC151LP</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>1 relay contact:</td>
</tr>
<tr>
<td></td>
<td>30 V AC, 1 A / 60 V DC, 0.5 A</td>
</tr>
<tr>
<td></td>
<td>1 NAMUR output:</td>
</tr>
<tr>
<td></td>
<td>Only for ATEX/IECEx version TRANSIC151LP</td>
</tr>
<tr>
<td>Interfaces</td>
<td>RS-485 (not for the ATEX/IECEx version)</td>
</tr>
<tr>
<td></td>
<td>RS-232c (service interface; not for the ATEX/IECEx version)</td>
</tr>
<tr>
<td></td>
<td>USB (not approved for Ex-applications)</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>See dimensional drawings</td>
</tr>
<tr>
<td>Weight</td>
<td>(\pm 2.2) kg</td>
</tr>
<tr>
<td>Material in contact with media</td>
<td>Stainless steel 1.4404 (AISI 316L), Kalrez®, EPDM, PTFE, SiN, MgF₂, polymer coating</td>
</tr>
<tr>
<td>Mounting</td>
<td>Flange for direct installation in the process</td>
</tr>
<tr>
<td></td>
<td>Wall-mounting bracket for ambient air measurement</td>
</tr>
<tr>
<td></td>
<td>Wall-mounting bracket for measurement with measuring gas cell</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>Voltage</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>24 V DC</td>
</tr>
<tr>
<td></td>
<td>TRANSIC151LP: 21.6 ... 26.4 V</td>
</tr>
<tr>
<td></td>
<td>For ATEX/IECEX version via TSA151 power supply, a PELV power supply is mandatory</td>
</tr>
<tr>
<td>Current consumption</td>
<td>500 mA</td>
</tr>
<tr>
<td></td>
<td>TRANSIC151LP 240 mA</td>
</tr>
<tr>
<td>Power consumption</td>
<td>≤ 6 W</td>
</tr>
<tr>
<td></td>
<td>TRANSIC151LP ≤ 5.2 W</td>
</tr>
</tbody>
</table>

| **Corrective functions** | Adjustment with ambient air or test gases |
| **Test functions** | Contamination check |
Ordering information

Our regional sales organization will help you to select the optimum device configuration.

Type code

TRANSIC111LP

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>With flange for in-situ installation, <0.5 bar, O<sub>2</sub> measuring range of 0 ... 25 vol.-%</td>
</tr>
<tr>
<td>B</td>
<td>With wall bracket for ambient air measurement, O<sub>2</sub> measuring range 2 ... 25 vol.-%</td>
</tr>
<tr>
<td>C</td>
<td>With sample cell and wall bracket, PN10, O<sub>2</sub> measuring range 0 ... 25 vol.-%</td>
</tr>
<tr>
<td>D</td>
<td>With flange for in-situ installation, <0.5 bar, O<sub>2</sub> measuring range 0 ... 100 vol.-% [1]</td>
</tr>
<tr>
<td>E</td>
<td>With sample cell and wall bracket, PN10, O<sub>2</sub> measuring range 0 ... 100 vol.-% [1]</td>
</tr>
<tr>
<td>F</td>
<td>With flange for in-situ installation, PN10, O<sub>2</sub> measuring range of 0 ... 25 vol.-%</td>
</tr>
<tr>
<td>G</td>
<td>With weld-on nozzle for in-situ installation, PN10, O<sub>2</sub> measuring range of 0 ... 25 vol.-%</td>
</tr>
<tr>
<td>H</td>
<td>With 3” clamp connection for in-situ installation, PN10, O<sub>2</sub> measuring range of 0 ... 25 vol.-%</td>
</tr>
<tr>
<td>I</td>
<td>With flange for in-situ installation, PN10, O<sub>2</sub> measuring range of 0 ... 100 vol.-% [1]</td>
</tr>
<tr>
<td>J</td>
<td>With weld-on nozzle for in-situ installation, PN10, O<sub>2</sub> measuring range of 0 ... 100 vol.-% [1]</td>
</tr>
<tr>
<td>K</td>
<td>With 3” clamp connection for in-situ installation, PN10, O<sub>2</sub> measuring range of 0 ... 100 vol.-% [1]</td>
</tr>
</tbody>
</table>

Filter type

- **1** No filter [2]
- **2** Stainless steel mesh filter
- **3** PTFE filter with stainless steel mesh [3]

Analog output range [4] [5]

- **A** Output range 0 ... 5 vol.-%
- **B** Output range 0 ... 10 vol.-%
- **C** Output range 0 ... 15 vol.-%
- **D** Output range 0 ... 20 vol.-%
- **E** Output range 0 ... 25 vol.-%
- **F** Output range 0 ... 100 vol.-%
- **X** Output range from ______ vol.-% to ______ vol.-%

Fault state for analog output [6]

- **A** ≤ 3 mA [7]
- **B** ≥ 21 mA

Digital output [4]

- **1** Digital output opens ONLY in case of fault state
- **4** Digital output opens to indicate maintenance request
- **X** Digital output opens, if O₂ value undercuts the preset value of _____ vol.-% [8]
- **Y** Digital output opens, if O₂ value exceeds the preset value of _____ vol.-% [8]

Material O-ring set

- **A** EPDM
- **B** FFKM (Kalrez®)
- **C** FKM (BAM approved)

Cable bushing

- **1** Cable gland M20 x 1.5 for cable Ø 8 ... 11 mm
- **2** Conduit fitting NPT 1/2” for inner threads
- **3** Connector, 8-pin M12, male, with cable, 2 m
- **4** Connector, 8-pin M12, male, with cable, 6 m
- **5** Connector, 8-pin M12, male, with cable, 10 m

Reference gas inlet

- **A** No reference gas inlet
- **B** Reference gas inlet with check valve [9]

Accessories

- **1** No accessories
- **2** RS-232 interface cable for PC

Language operation instructions

- **B** English
- **C** German
- **D** Spanish
- **E** Russian
- **F** French
- **G** Italian
- **H** Chinese (Mandarin)
- **I** Portuguese

Calibration

- **1** ISO 9001 compliant factory calibration

Maintenance and repair

- **A** Standard maintenance and repair
[1] With certificate for oxygen service
[2] For use in clean gas only or with a sample cell
[3] Not selectable for the O₂ measuring range 0 ... 100 vol.-%. Not recommended for wet gas near dew point.
[4] Can be reconfigured in the field
[5] Factory setting: 0 ... 25 vol-% O₂
[6] Can be reconfigured in the field (requires a serial interface and a terminal program on PC)
[7] Selectable only for the output range of 4 ... 20 mA
[8] Factory setting: 10 vol-% O₂
[9] PTFE filter for reference gas inlet recommended

TRANSIC121LP

Version

A With flange for in-situ installation, < 0.5 bar, O₂ measuring range of 0 ... 25 vol.-%
B With wall bracket for ambient air measurement, O₂ measuring range 2 ... 25 vol.-%
C With sample cell and wall bracket, PN10, O₂ measuring range 0 ... 25 vol.-%
F With flange for in-situ installation, PN10, O₂ measuring range of 0 ... 25 vol.-%
G With weld-on nozzle for in-situ installation, PN10, O₂ measuring range 0 ... 25 vol.-%
H With 3” clamp connection for in-situ installation, PN10, O₂ measuring range 0 ... 25 vol.-%

Filter type

1 No filter [1]
2 Stainless steel mesh filter
3 PTFE filter with stainless steel mesh [2]

Analog output range [3]

A Output range 0 ... 5 vol.-%
B Output range 0 ... 10 vol.-%
C Output range 0 ... 15 vol.-%
D Output range 0 ... 20 vol.-%
E Output range 0 ... 25 vol.-%
X Output range from _____ vol.-% to _____ vol.-% [4]

Analog output [5]

F 1 4 ... 20 mA
G 2 10 ... 20 mA

Fault state for analog output [5]

A ≤ 3 mA [6]
B ≥ 21 mA

Digital output [3]

1 Digital output opens ONLY in case of fault state
2 Digital output opens, if O₂ value undercuts the preset value of _____ vol.-% [7]
3 Digital output opens, if O₂ value exceeds the preset value of _____ vol.-% [7]
4 Digital output opens to indicate maintenance request

Cable bushing

A Cable gland Ex M20 x 1.5 for cable Ø 8 ... 11 mm [8]
B Conduit fitting NPT 1/2” for inner threads

Reference gas inlet

A No reference gas inlet
B Reference gas inlet with check valve [9]

Language operation instructions

B English

Approval

1 FM (USA, Canada)
A Material O-ring-set
B FFKM (Kalrez®)
C FFKM (BAM approved)

[1] For use in clean gas only or with a sample cell
[2] Not recommended for wet gas near dew point
[3] Can be reconfigured in the field
[4] Maximum O₂ concentration: 25 vol.-% (higher concentrations are not covered by the FM standards)
[5] Can be reconfigured in the field (requires a serial interface and a terminal program on PC). Reconfiguration should be done only in a non-hazardous area!
[6] Selectable only for the output range of 4 ... 20 mA
[7] Factory setting: 10 vol-% O₂
[8] Cable gland usable only in the USA according to FM approval
[9] PTFE filter for reference gas inlet recommended
GAS TRANSMITTERS

TRANSC100LP

Version
- A: With flange for in-situ installation, < 0.5 bar, \(O_2\) measuring range of 0 ... 25 vol.-%
- B: With wall bracket for ambient air measurement, \(O_2\) measuring range 2 ... 25 vol.-%
- C: With sample cell and wall bracket, PN10, \(O_2\) measuring range 0 ... 25 vol.-%
- F: With flange for in-situ installation, PN10, \(O_2\) measuring range of 0 ... 25 vol.-%
- G: With weld-on nozzle for in-situ installation, PN10, \(O_2\) measuring range 0 ... 25 vol.-%
- H: With 3” clamp connection for in-situ installation, PN10, \(O_2\) measuring range 0 ... 25 vol.-%

Filter type
- 1: No filter [1]
- 2: Stainless steel mesh
- 3: PTFE filter with stainless steel mesh [2]

Analog output range
- A: Output range 0 ... 5 vol.-%
- B: Output range 0 ... 10 vol.-%
- C: Output range 0 ... 15 vol.-%
- D: Output range 0 ... 20 vol.-%
- E: Output range 0 ... 25 vol.-%
- X: Output range from _____ vol.-% to _____ vol.-% [4]

Analog output
- 1: 4 ... 20 mA
- 2: 0 ... 20 mA

Fault state for analog output
- A: \(\leq 3\) mA [6]
- B: \(\geq 21\) mA

NAMUR digital output
- 1: Digital output opens ONLY in case of fault state
- 2: Digital output opens to indicate maintenance request
- X: Digital output opens, if \(O_2\) value undercuts the preset value of _____ vol.-% [7]
- Y: Digital output opens, if \(O_2\) value exceeds the preset value of _____ vol.-% [7]

Material O-ring set
- B: FFKM (Kalrez®)
- C: FKM (D&M approved)

Cable bushing
- D: Ex M20 x 1.5 with 0.5 m cable to TSA151 [8]
- E: Ex M20 x 1.5 with 2 m cable to TSA151 [8]
- F: Ex M20 x 1.5 with 5 m cable to TSA151 [8]
- G: Conduit NPTF 1/2” for inner threads with 0.5 m cable to TSA151 [8]
- H: Conduit NPTF 1/2” for inner threads with 2 m cable to TSA151 [8]
- I: Conduit NPTF 1/2” for inner threads with 5 m cable to TSA151 [8]

Reference gas inlet
- A: No reference gas inlet
- B: Reference gas inlet with check valve [9]

Accessories
- 1: No accessories
- 4: USB interface cable for PC [10]

Language operation instructions
- B: English
- C: German
- D: Spanish
- E: Russian
- F: French
- G: Italian
- I: Portuguese

Calibration
- 1: ISO 9001 compliant factory calibration

Maintenance and repair
- 1: Standard maintenance and repair

Power supply
- 1: ATEX / IECEx

[1] For use in clean gas only or with a sample cell
[2] Not recommended for wet gas near dew point
[3] Can be reconfigured in the field
[4] Maximum \(O_2\) concentration: between 5 vol.-% and 25 vol.-%. Factory setting: 0 ... 25 vol.-% \(O_2\)
[5] Can be reconfigured in the field (requires a serial interface and a terminal program on PC). Reconfiguration should be done
only in a non-hazardous area!

[6] Selectable only for the output range of 4 ... 20 mA

[7] Factory setting: 10 vol-% O₂

[8] For connection between transmitter and power supply TSA151 only Sick Ex i cabel have be used

[9] PTFE filter for reference gas inlet recommended

[10] Connection to PC should be done only in a non-hazardous area! Use Sick service interface cables only.

[11] Do not operate TRANSIC151LP transmitter without TSA151 power supply!

Dimensional drawings
(Dimensions in mm (inch))

TRANSIC100LP with flange adapter for process measurements below 0.5 bar

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>310 (12.20)</td>
</tr>
<tr>
<td>B</td>
<td>169 (6.65)</td>
</tr>
<tr>
<td>C</td>
<td>141 (5.55)</td>
</tr>
<tr>
<td>D</td>
<td>148 (5.83)</td>
</tr>
<tr>
<td>E</td>
<td>59 (2.32)</td>
</tr>
<tr>
<td>F</td>
<td>97 (3.82)</td>
</tr>
<tr>
<td>H</td>
<td>159 (6.26)</td>
</tr>
<tr>
<td>I</td>
<td>186 (7.32)</td>
</tr>
<tr>
<td>J</td>
<td>148 (5.83)</td>
</tr>
<tr>
<td>K</td>
<td>Ø 97 (3.82)</td>
</tr>
<tr>
<td>L</td>
<td>169 (6.65)</td>
</tr>
<tr>
<td>M</td>
<td>141 (5.55)</td>
</tr>
<tr>
<td>N</td>
<td>59 (2.32)</td>
</tr>
<tr>
<td>O</td>
<td>97 (3.82)</td>
</tr>
<tr>
<td>P</td>
<td>159 (6.26)</td>
</tr>
<tr>
<td>Q</td>
<td>186 (7.32)</td>
</tr>
</tbody>
</table>

TRANSIC100LP with flange adapter PN10

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>311 (12.24)</td>
</tr>
<tr>
<td>B</td>
<td>170 (6.69)</td>
</tr>
<tr>
<td>C</td>
<td>141 (5.55)</td>
</tr>
<tr>
<td>D</td>
<td>147 (5.79)</td>
</tr>
<tr>
<td>E</td>
<td>59 (2.32)</td>
</tr>
<tr>
<td>F</td>
<td>97 (3.82)</td>
</tr>
<tr>
<td>H</td>
<td>159 (6.26)</td>
</tr>
<tr>
<td>I</td>
<td>186 (7.32)</td>
</tr>
<tr>
<td>J</td>
<td>148 (5.83)</td>
</tr>
<tr>
<td>K</td>
<td>Ø 97 (3.82)</td>
</tr>
<tr>
<td>L</td>
<td>169 (6.65)</td>
</tr>
<tr>
<td>M</td>
<td>141 (5.55)</td>
</tr>
<tr>
<td>N</td>
<td>59 (2.32)</td>
</tr>
<tr>
<td>O</td>
<td>97 (3.82)</td>
</tr>
<tr>
<td>P</td>
<td>159 (6.26)</td>
</tr>
<tr>
<td>Q</td>
<td>186 (7.32)</td>
</tr>
</tbody>
</table>
TRANSIC100LP with wall bracket and sample gas cell

TRANSIC100LP with wall bracket for ambient measurements
TRANSIC100LP, weather hood for flange mounting
TRANSIC100LP, weather hood for wall mounting

1. Mounting holes for transmitter bracket
2. Mounting slots for wall mounting bracket
TRANSIC100LP, TSA151 intrinsically safe power supply
Connection types

Gas connections

1. Optional inlet for reference gas (Swagelok, 6 mm)
2. Gas inlet (Swagelok, 6 mm)
3. Condensate outlet
4. Gas outlet (Swagelok, 6 mm)
Electrical connections and pin assignment

1. Cable gland
2. RS-232, service interface (RJ45)
3. Jumper for RS-485 termination
4. RS-485 termination: activated
5. RS-485 termination: de-activated
6. Power supply U_{in}: +24 V DC, 0 V (GND)
7. Analog output I_{out}: +, -
8. RS-485 connections: A, B
9. Digital output: alarm

Pin assignment connector, 8-pin, M12 with cable (option)

- RS-485, A
- AO: - (0/4 mA)
- DO
- AO: + (20 mA)
- M
- L+ (24 V DC)
- RS-485, B
- DO

- Folke:
- bm: 2
- grn: 3
- yell: 4
- gre: 5
- pk: 6
- blu: 7
- red: 8
WWW.MYSICK.COM – SEARCH ONLINE AND ORDER

Search online quickly and safely - with the SICK “Finders”

Product Finder: We can help you to quickly target the product that best matches your application.

Applications Finder: Select the application description on the basis of the challenge posed, industrial sector, or product group.

Literature Finder: Go directly to the operating instructions, technical information, and other literature on all aspects of SICK products.

Efficiency – with the E-Commerce-Tools from SICK

Find out prices and availability
Determine the price and possible delivery date of your desired product simply and quickly at any time.

Request or view a quote
You can have a quote generated online here. Every quote is confirmed to you via e-mail.

Order online
You can go through the ordering process in just a few steps.

FOR SAFETY AND PRODUCTIVITY: SICK LIFE TIME SERVICES

SICK LifeTime Services is a comprehensive set of high-quality services provided to support the entire life cycle of products and applications from system design all the way to upgrades. These services increase the safety of people, boost the productivity of machines and serve as the basis for our customers’ sustainable business success.

Consulting & Design
Globally available experts for cost-effective solutions

Product & System Support
Fast and reliable, by telephone or on location

Verification & Optimization
Checks and recommendations for increased availability

Upgrade & Retrofits
Uncovers new potential for machines and systems

Training & Education
Employee qualification for increased competitiveness
SICK AT A GLANCE

SICK is a leading manufacturer of intelligent sensors and sensor solutions for factory, logistics, and process automation. With more than 6,000 employees and over 40 subsidiaries worldwide, we are always close to our customers. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in various industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services round out our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is “Sensor Intelligence.”

Worldwide presence:
Australia, Austria, Belgium/Luxembourg, Brazil, Czech Republic, Canada, China, Denmark, Finland, France, Germany, Great Britain, Hungary, India, Israel, Italy, Japan, Mexico, Netherlands, Norway, Poland, Romania, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Turkey, United Arab Emirates, USA

Please find detailed addresses and additional representatives and agencies in all major industrial nations at: www.sick.com