
T E C H N I C A L I N F O R M A T I O N

Data format description

Compact format and MSGPACK format for trans‐
mitting measurement data

Contents

1 Glossary.. 3

2 General information on the transmission of measurement
data... 4

3 Parameterization of the data output via telegrams..................... 5
3.1 Selecting the data output format... 5
3.2 Communication settings for data transmission..................................... 5
3.3 Activating the data transmission... 5
3.4 Example... 5

4 MSGPACK format.. 7
4.1 Framing.. 7
4.2 MSGPACK keywords... 7
4.3 Serialization of a segment.. 9

4.3.1 Notation used... 9
4.3.2 Serialization of the “Scan segment” class............................. 10
4.3.3 Serialization of the “Scan” class.. 11
4.3.4 Serialization of arrays.. 13

5 Compact format.. 14
5.1 Framing.. 14
5.2 Division of a segment into modules.. 15
5.3 Serialization of modules... 15

5.3.1 Meta data... 16
5.3.2 Measurement data.. 19

5.4 IMU format.. 21

6 Definitions applicable to both data formats................................. 23
6.1 Azimuth angle... 23
6.2 Segment counter.. 23
6.3 Representation of RSSI values.. 24
6.4 Representation of bit fields.. 24
6.5 Representation of beam characteristics (“Properties”)......................... 25

7 Behavior of serialization for data reduction.................................. 26
7.1 Behavior in relation to the number of available echoes........................ 26
7.2 Behavior when restricting the azimuth angular range........................... 26
7.3 Behavior when reducing the available layers... 27

CONTENTS

2 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

1 Glossary

Designation Explanation

RSSI RSSI (received signal strength indicator) is defined
as an indicator of the strength of the received sig‐
nal.

Context:
• Small RSSI value = low signal strength

• Large RSSI value = high signal strength

The magnitude of the RSSI values is not standar‐
dized and can vary from device to device.

Modules A module is an object that creates/provides data
for different layers

layer A traditional 2D LiDAR has a layer at 0°. Multi-
layer scanners can have multiple layers (multiScan
=> 16 layers).

Beam Is a measurement beam with specific properties
such as distance, remission, …

Scan Collection of beams in the azimuth direction of a
layer.

Scan segment A scan segment is defined as a collection of scans
that represent a portion of a frame. All scans in a
segment have different elevation angles (i.e., they
belong to different layers in the case of a multi-
layer LiDAR sensor). The angular range in azimuth
may (but need not) be different for each scan in
a segment. For multi-layer LiDAR sensors, a scan
segment is typically used to combine scans that
were acquired at the same time or that have the
same azimuth range.

Frame A frame is defined as the data acquired within the
entire field of view of a LiDAR sensor (e.g., 360°
for rotating LiDAR sensors such as the multiScan)

multiScan example:
• 1 frame consists of 12 segments

• 1 segment comprises n layers = n scans (multi‐
Scan136 example: 16 layers = 16 scans)

• 1 scan comprises several beams

Azimuth angle Theta

Elevation angle Phi

GLOSSARY 1

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 3
Subject to change without notice

2 General information on the transmission of measurement data

The measurement data are transmitted segment by segment, i.e., each transmitted
data package (for example a UDP packet or TCP packet) contains a segment (cf.
the Segmented data output section in the operating instructions). Each segment can
be interpreted separately, i.e., it is not necessary to collect all segments in a frame
(=all measurement data recorded in one revolution) to start processing. This makes it
possible to reduce the latency between the generation of the measurement data and
the processing of that data on the client side.

Two formats are available for the transmission of measurement data, which will be
referred to in the following as MSGPACK format and Compact format.

The MSGPACK format encodes the measurement data according to the MSGPACK
standard (see also www.msgpack.org), which has the advantage that the data pack‐
ages can be easily parsed using the standard libraries available for numerous program‐
ming languages. The MSGPACK format is self-describing. Each data field is described
by a keyword, so it is easy to determine which data field is currently being read without
having to know the exact structure of the data.

In the Compact format, the measurement data of the sensor are represented as com‐
pactly as possible. The individual fields are no longer self-describing as with MSGPACK,
but only a string of bytes is transmitted. The structure of the transmitted data package
must be known to the user in advance. This has the advantage that as little bandwidth
as possible is used on the data line and that a very efficient interpretation of the data
is possible by copying the transmitted byte sequence into a structure using a single
command (e.g., memcpy in the programming language C/C++).

2 GENERAL INFORMATION ON THE TRANSMISSION OF MEASUREMENT DATA

4 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

http://www.msgpack.org

3 Parameterization of the data output via telegrams

Various telegrams for parameterization and activation of the data output are described
below. An example is provided in section 3.4 for the communication protocol CoLa A
only, telegrams via other communication interfaces can be found in the Telegram listing
under www.sick.com/8014631.

3.1 Selecting the data output format

Variable name: ScanDataFormat

Parameters:

Table 1: Selecting the data output format

Name Type Values: Meaning

- Enum 1: MSGPACK , 2: Compact

3.2 Communication settings for data transmission

Variable name: ScanDataEthSettings

Parameters:

Table 2: Communication settings for data transmission

Name Type Sensor Values: Meaning

Protocol Enum multiScan1xx 1: UDP

– 2: TCP (reserved)

IPAddress Array of
unsigned short
int

multiScan1xx IP address of the data
recipient, each array ele‐
ment stands for one digit
of the IP address, e.g.
{192,168,0,102} stands
for the IP address
192.168.0.102

Port Unsigned int multiScan1xx Port of the recipient to
which the data is sent

3.3 Activating the data transmission

Variable name: ScanDataEnable

Parameter:

Table 3: Activating the data transmission

Name Type Values: Meaning

- Bool True for active data output,
false for deactivated data out‐
put

3.4 Example

Configuration and activation of the MSGPACK data output to the client IP address
192.168.0.102 and client port 2115. The commands are specified in the CoLa A
dialect and are sent via TCP/IP to the IP address of the sensor on port 2111.

PARAMETERIZATION OF THE DATA OUTPUT VIA TELEGRAMS 3

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 5
Subject to change without notice

http://www.sick.com/8014631

Table 4: Example parameterization of data output

Command (in CoLa A dialect) Description

<STX>sMN SetAccessMode 3
F4724744<ETX>

Log on to the sensor with the “Authorized Cus‐
tomer” user level.

<STX>sWN ScanDataFormat 1<ETX> Select MSGPACK as data format.

<STX>sWN ScanDataEthSettings 1
C0 A8 0 66 843<ETX>
Alternatively with arguments in decimal nota‐
tion:

<STX>sWN ScanDataEthSettings 1
+192 +168 +0 +102 +2115<ETX>

Data is sent via UDP to the IP address
192.168.0.102 and port 2115.

NOTE In CoLa A, integers are usually
specified in hexadecimal notation. To use deci‐
mal numbers, a sign (+ or –) must be placed
in front of the number.

<STX>sWN ScanDataEnable 1<ETX>

Activate data output.

<STX> sWN ScanDataEnable 0
>ETX>

Deactivate data output.

<STX>sMN Run 1<ETX> Log out of the sensor.
NOTE The parameterization only

becomes active after logging off from the sen‐
sor.

Figure 1: Example parameterization of data output

3 PARAMETERIZATION OF THE DATA OUTPUT VIA TELEGRAMS

6 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

4 MSGPACK format

4.1 Framing

The data packages transmitted in MSGPACK format are enclosed within a frame (see
figure 2, page 7):

The actual MSGPACK payload data is preceded by 4 <STX> characters (hex code 0x02)
and the size of the actual payload data (without the checksum at the end) in bytes as
a uint32 value. Following the MSGPACK data is a CRC32 checksum calculated on the
MSGPACK data only (without the <STX> characters and packet size). The little-endian
representation is used for both the size of the payload and the checksum.

\x2\x2\x2\x2

4 Bytes

Size of MSGPACK

buffer in bytes

4 Bytes

MSGPACK buffer CRC32

4 Bytes

Figure 2: Framing in the MSGPACK format

4.2 MSGPACK keywords

To reduce the bandwidth on the transmission line, the keywords used in MSGPACK are
encoded as uint8 values. The bandwidth savings from this are significant, but the user
must interpret the read uint8 keywords according to the following table. The description
of the keywords in the table is for overview purposes only. A detailed description can be
found in the sections referred to in the respective table rows. Exactly the same names
for the keywords are used there.

NOTE
The data packages can be read using standard MSGPACK parsers after removing the
framing. For some parsers, options must be set to allow uint8 values as keywords. For
the Python msgpack module, for example, the option strict_map_key=False must be
set:
unpacked = msgpack.unpackb(msgpackValue, strict_map_key=False)

Table 5: Used MSGPACK keywords and associated uint8 codes

Keyword name Uint8 value Description

classname 0x10 Keyword for the Scan (see "Serialization of
the “Scan” class", page 11) and ScanSeg‐
ment (see "Serialization of the “Scan segment”
class", page 10) classes represented in the
data

data 0x11 Keyword for the data part, which belongs to
the Array, Scan or ScanSegment classes, see
"Serialization of the “Scan” class", page 11;
see "Serialization of the “Scan segment”
class", page 10; see "Serialization of arrays",
page 13.

numOfElems 0x12 Number of elements in an array, see "Serializa‐
tion of arrays", page 13

elemSz 0x13 Size of an array element in bytes, see "Serializa‐
tion of arrays", page 13

endian 0x14 Keyword describing the endianness of the
array elements, see "Serialization of arrays",
page 13

MSGPACK FORMAT 4

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 7
Subject to change without notice

Keyword name Uint8 value Description

elemTypes 0x15 Keyword for the type of array elements, see
"Serialization of arrays", page 13

Little 0x30 Keyword for endianness “little”.

float32 0x31 Data type float32

uint32 0x32 Data type uint32

uint8 0x33 Data type uint8

uint16 0x34 Data type unit16

ChannelTheta 0x50 Data channel with azimuth angles, see "Seriali‐
zation of the “Scan” class", page 11

ChannelPhi 0x51 Data channel with elevation angles, see "Seriali‐
zation of the “Scan” class", page 11

DistValues 0x52 Channel with distance values, see "Serialization
of the “Scan” class", page 11

RssiValues 0x53 Channel with RSSI values, see "Serialization of
the “Scan” class", page 11

PropertiesValues 0x54 Channel with further properties of a measure‐
ment beam, see "Serialization of the “Scan”
class", page 11 and see "Representation of
beam characteristics (“Properties”)", page 25

Scan 0x70 Keyword for the “Scan” class, see "Serialization
of the “Scan” class", page 11

TimestampStart 0x71 Start time stamp of a scan, see "Serialization of
the “Scan” class", page 11

TimestampStop 0x72 Stop time stamp of a scan, see "Serialization of
the “Scan” class", page 11

ThetaStart 0x73 Azimuth start angle of a scan, see "Serialization
of the “Scan” class", page 11

ThetaStop 0x74 Azimuth stop angle of a scan, see "Serialization
of the “Scan” class", page 11

ScanNumber 0x75 Number of a scan, see "Serialization of the
“Scan” class", page 11

ModuleId 0x76 ModuleID of a scan, see "Serialization of the
“Scan” class", page 11

BeamCount 0x77 Number of beams in a scan, see "Serialization
of the “Scan” class", page 11

EchoCount 0x78 Number of echoes in a scan, see "Serialization
of the “Scan” class", page 11

ScanSegment 0x90 Keyword for the “ScanSegment” class, see
"Serialization of the “Scan segment” class",
page 10

SegmentCounter 0x91 Segment number of a segment, see "Serializa‐
tion of the “Scan segment” class", page 10

FrameNumber 0x92 Frame number of a segment, see "Serialization
of the “Scan segment” class", page 10

Availability 0x93 Availability of a segment, see "Serialization of
the “Scan segment” class", page 10

SenderId 0x94 SenderID of a segment, see "Serialization of the
“Scan segment” class", page 10

SegmentData 0x96 Array with the actual measurement data for
each layer, see "Serialization of the “Scan seg‐
ment” class", page 10

4 MSGPACK FORMAT

8 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

Keyword name Uint8 value Description

LayerId 0xA0 Array with layer IDs, see "Serialization of the
“Scan segment” class", page 10

TelegramCounter 0xB0 Telegram counter, see "Serialization of the
“Scan segment” class", page 10

4.3 Serialization of a segment

Each data package transmits one segment enclosed within a frame as per section
section 4.1. A segment contains various fields, which are described in see table 6.
The actual measurement data is located in the SegmentData field, which contains one
element of the Scan class (see "Serialization of the “Scan” class", page 11) for each
layer of the sensor (see figure 3, page 9).

ScanSegment

TelegramCounter

TimeStampTransmit

SegmentCounter

FrameNumber

Availability

SenderId

LayerId

SegmentData
SegmentData

Scan1

Scan2

...

ScanN

Figure 3: General structure of a segment. In addition to some metadata, the ScanSegment class
contains an array named SegmentData that contains an object of type Scan for each layer of the
sensor.

The data of a segment are encoded in MSGPACK format. The following exception should
be noted: Measurement data in arrays such as distance, RSSI, angle etc. are binary
coded here to allow easier serialization (see "Serialization of arrays", page 13).

4.3.1 Notation used

The following notes on the notation used relate to the description of the structures
encoded in MSGPACK:

• Msgpack_map_header is used to denote the header of a msgpack map
as per this specification: https://github.com/msgpack/msgpack/blob/mas‐
ter/spec.md#map-format-family

• The keyword names and other names used in the structures correspond to those
from see table 5, page 7.

• Angle brackets are used to specify placeholders for values referred to in the
respective declarations, e.g., <numOfElems> for the number of elements of an
array.

MSGPACK FORMAT 4

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 9
Subject to change without notice

https://github.com/msgpack/msgpack/blob/master/spec.md#map-format-family
https://github.com/msgpack/msgpack/blob/master/spec.md#map-format-family

• Keywords printed in bold refer to substructures of a type, e.g., other types or
arrays.

• Although a structure similar to JSON is used for the description in this document,
the data is however encoded according to the MSGPACK specification: https://
github.com/msgpack/msgpack/blob/master/spec.md

4.3.2 Serialization of the “Scan segment” class

The ScanSegment class is represented as a nesting of MSGPACK maps as follows:

msgpack_map_header {
"classname": ScanSegment,
"data":
msgpack_map_header {
"TelegramCounter": <telegramCounter>,
"TimeStampTransmit": <timeStampTransmit>,
"SegmentCounter": <segmentCounter>,
"FrameNumber": <frameNumber>,
"Availability": <availability>,
"SenderId": <senderId>,
"LayerId": layerIdVector,,

"SegmentData", segmentData
}
}
Definition: Definition of the ScanSegment class

The meaning of the individual fields is shown in the following table.

Table 6: Description of the attributes of the ScanSegment class

Name Type Description

TelegramCounter MSGPACK int 1) Counts all telegrams with measurement data sent
in MSGPACK format since switching on the device.
The counter starts at 1.

TimeStampTransmit MSGPACK int 1) Sensor system time in µs since 1.1.1970 00:00 in
UTC.

SegmentCounter MSGPACK int 1) Segment counter as described in section.

FrameNumber MSGPACK int 1) Counts the number of full revolutions since the
device was started.

Reserved

SenderId MSGPACK int 1) Device serial code. It can be used to detect on the
recipient which sensor the data was sent from.

LayerId MSGPACK array 2)

of int 1)
Array of layer indices. The layer indices start at 1
and increase with decreasing elevation angle.

SegmentData MSGPACK array2)

of scans
Array of elements of the Scan class (see "Serial‐
ization of the “Scan” class", page 11) that con‐
tain the actual measurement data. The following
applies: The scan at position i has the layer number
LayerId[i].

1) github.com/msgpack/msgpack/blob/master/spec.md#int-format-family
2) github.com/msgpack/msgpack/blob/master/spec.md#array-format-family

4 MSGPACK FORMAT

10 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md#int-format-family
https://github.com/msgpack/msgpack/blob/master/spec.md#array-format-family

NOTE The arrays LayerId and SegmentData are MSGPACK arrays as per the
MSGPACK specification and are not represented like arrays containing measurement
data (see "Serialization of arrays", page 13).

4.3.3 Serialization of the “Scan” class

The Scan class is represented as a nesting of MSGPACK maps as follows:

msgpack_map_header {
"classname": Scan,
"data":
msgpack_map_header {
"TimeStampStart": <timeStampStart>,
"TimeStampStop": <timeStampStop>,
"ThetaStart": <thetaStart>,
"ThetaStop": <thetaStop>,
"ScanNumber": <scanNumber>,
"ModuleId": <moduleId>,
"ChannelTheta": <channelTheta>,
"ChannelPhi": <channelPhi>,
"DistValues": <distValues>,
"RssiValues": <rssiValues>,
"PropertyValues": <propertyValues>,
"BeamCount": <beamCount>,
"EchoCount": <echoCount> }
}
Definition: Definition of the “Scan” class. The fields highlighted in gray are optional, i.e.,
they are not necessarily present in the structure.

The meaning of the individual fields is shown in the following table:

Table 7: Description of the attributes of the Scan class

Name Type Description

TimeStampStart MSGPACK int 1) Acquisition time of the first beam of the scan in µs.
The device's internal time base is used or, if the
sensor offers the feature, the time set externally.

TimeStampStop MSGPACK int 1) Acquisition time of the last beam of the scan in µs.
The device's internal time base is used or, if the
sensor offers the feature, the time set externally.

ThetaStart MSGPACK int 1) Azimuth angle of the first beam of the scan in radi‐
ans.

ThetaStop MSGPACK int 1) Azimuth angle of the last beam of the scan in radi‐
ans.

ScanNumber MSGPACK int 1) Not used.

ModuleId MSGPACK int 1) Number of the physical module that generated the
data. In the case of the multiScan, for example, this
is one of the two measuring modules.

MSGPACK FORMAT 4

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 11
Subject to change without notice

Name Type Description

ChannelTheta array of float32 Array of azimuth angles of a specific beam in radi‐
ans. See also section 6.1. The encoding of the data
in this array is described in section 4.3.4. The user
can configure whether the array is present in the
data structure.

ChannelPhi array of float32 Array with the elevation angle (cf. operating instruc‐
tions, Coordinate system section) of the scan in
radians. For single layer and multi-layer sensors,
this array contains only one element. The encod‐
ing of the data in this array is described in
section 4.3.4. The user can configure whether the
array is present in the data structure.

DistValues array of (array of
float32)

Array containing an array of distance values for
each echo of the scan. The number of sub-arrays
corresponds to the number of echoes in the scan,
see also the “EchoCount” field below. The distance
values are specified in mm. The encoding of the
data in this array is described in section 4.3.4. The
user can configure whether the array is present in
the data structure.
The structure of the nested array is illustrated in
figure 4.

RssiValues array of (array of
uint16)

Array containing an array of RSSI values for each
echo of the scan. The number of sub-arrays corre‐
sponds to the number of echoes in the scan, see
also the “EchoCount” field below. For the represen‐
tation of RSSI values, see "Representation of RSSI
values", page 24. The encoding of the data in this
array is described in section 4.3.4. The user can
configure whether the array is present in the data
structure.
The structure of the nested array is illustrated in
figure 4.

PropertyValues array of uint8 Array with additional properties, for example “reflec‐
tor”, for each beam of a scan. See section 6.4 for
details. The encoding of the data in this array is
described in section 4.3.4. This array is optional.

BeamCount MSGPACK int 1) Number of beams in the current scan.

EchoCount MSGPACK int 1) Number of echoes in the current scan.

1) github.com/msgpack/msgpack/blob/master/spec.md#int-format-family

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

DistValues

DistValues[0]

Beams

Echos

DistValues[1] DistValues[2]

RssiValues

RssiValues[0]

Beams

Echos

RssiValues[1] RssiValues[2]

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

Figure 4: Example of the structure of the DistValues and RssiValues arrays. Shown here are data
for a scan with 3 echoes and 15 beams.

4 MSGPACK FORMAT

12 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

https://github.com/msgpack/msgpack/blob/master/spec.md#int-format-family

4.3.4 Serialization of arrays

Arrays of measurement data (ChannelTheta, ChannelPhi, DistValues, RssiValues and
PropertyValues from see table 7, page 11) are encoded as follows:

msgpack_map_header {
"numOfElems": <number of array elements>,
"elemSz", < size of one array element in bytes>,
"endian", little,
"elemTypes", typesArray, ,

"data": binaryData
}
Definition: Definition of the “Array” class

The meaning of the individual fields of the Array class are shown in the following table.

Table 8: Description of the attributes of the “Array” class

Name Description

numOfElems Number of array elements

elemSz Size of an array element in bytes, e.g., 4 for float32 or 1 for
uint8.

endian The value is always “little”

elemTypes Array of element types. Only arrays with one element are
supported here. Example: {float32} for an array of float32
values. To represent an array of tuples, elemTypes would
therefore have multiple elements. This is not relevant,
however.

data Actual payload. The data is encoded as a byte array in
the MSGPACK int 1) and can be copied directly into a struc‐
ture/array after parsing the MSGPACK structure, taking
into account the endianness and the data type.

1) github.com/msgpack/msgpack/blob/master/spec.md#int-format-family

MSGPACK FORMAT 4

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 13
Subject to change without notice

https://github.com/msgpack/msgpack/blob/master/spec.md#int-format-family

5 Compact format

5.1 Framing

The data packages transmitted in Compact format are enclosed in a frame consisting
of a header before the actual payload and a checksum after the payload.

Data package

Header

CRC

Scan Segment

...

Framing

Figure 5: Framing in the Compact format, consisting of a header before the payload and a
checksum after the payload.

The structure of the frame header is shown in the following figure. The following table
explains the meaning of the individual fields of the header.

Figure 6: Structure of the Compact frame header.

Table 9: Description of the fields of the Compact frame header.

Name Size Type Description

startOfFrame 4 bytes uint32 Four <STX> characters (hex code 0x02):
\x2\x2\x2\x2

commandId 4 bytes uint32 Type of the transmitted telegram. To
transmit primary data, the commandId is
1.

telegramCounter 8 bytes uint64 Counts all telegrams sent since the device
was switched on. The counter starts at 1.

timeStampTransmit 8 bytes uint64 Sensor system time in µs since 1.1.1970
00:00 in UTC. If a time server is being
used, the relevant set time will be used.

telegramVersion 4 bytes uint32 Version of the telegram with the comman‐
dId used. For the telegram for serialization
of primary data (commandId 1), only tele‐
gramVersion 3 is currently used.

sizeModule0 4 bytes uint32 Size of the first module to be read. See
section 5.2 for the definition of modules
and for notes on how to extract them from
the data packages.

5 COMPACT FORMAT

14 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

The header always has a fixed size of 32 bytes.

The CRC32 checksum that follows the payload is (in contrast to the MSGPACK format,
see section section 4.1) is calculated over the entire data package, i.e., over the header
and the serialized scan segment.

All values in the header and the checksum are encoded as little endian.

5.2 Division of a segment into modules

An important design feature of the Compact format is that the data of the different
layers are grouped into modules. Both data generated by different physical measuring
modules (e.g., the different measuring modules in a multiScan1xx) and data that differ
in scope or angular resolution (e.g., HighResolution layers vs. layers with 1° angular
resolution in the case of the multiScan136) are assigned to different modules. The
following figure shows an example of this for the mulitScan136.

Azimuth

180°

1° scan layers measuring module 0

HighRes layer measuring module 0

1° scan layers measuring module 1

HighRes layer measuring module 1

Figure 7: For the multiScan136, a segment consists of four modules, which are shown as
colored boxes in the figure: For each of the two physical measurement modules 0 and 1 there
are two modules: One for the layers with 1° angular resolution, and one for the HighRes layer
with 1/8° angular resolution.

The modules available in a data package can vary depending on the configuration of
the sensor. It is therefore recommended to proceed module by module when reading
the data, as illustrated in the following pseudo code.

Table 10: Pseudocode: Example of reading the individual modules from a data package.

Read the 32 Byte Header
Set currentModuleSize = sizeModule0 from the header
As long as currentModuleSize =! 0
Read next module of size currentModuleSize
Set currentModuleSize = nextModuleSize from the module just read
(see "Meta data", page 16)

5.3 Serialization of modules

Each module contains the actual measurement data and metadata describing the
measurement data:

COMPACT FORMAT 5

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 15
Subject to change without notice

ScanSegment

CRC

Header

Module 0

MetaData

MeasurementData

Module 1

MetaData

MeasurementData

Figure 8: Metadata and measurement data in the individual modules. In the example there are
two modules, and in each module the metadata comes first and then the measurement data.

5.3.1 Meta data

This section describes the metadata of a module. The names of the individual data
fields in the following table are for orientation purposes only. Since the data are present
as a byte sequence only, the names are not used explicitly.

Table 11: Metadata of a module for the Compact format

Name Size Type Description

SegmentCounter 8 bytes uint64 Segment counter as described in
section 6.1.

FrameNumber 8 bytes uint64 Counts the number of full revolutions
since the device was started.

SenderId 4 bytes uint32 Device serial code. It can be used to
detect on the receiver which sensor the
data was sent from.

numberOfLinesInMod‐
ule

4 bytes uint32 Number of layers contained in one mod‐
ule, see figure 11.

5 COMPACT FORMAT

16 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

Name Size Type Description

NumberOfBeamsPer‐
Scan

4 bytes uint32 Number of beams per scan from one
layer, see figure 11. Scans from all layers
in a module have the same number of
beams, see "Division of a segment into
modules", page 15.

NumberOfEchosPer‐
Beam

4 bytes uint32 Number of echoes per beam, see
figure 10.

TimeStampStart Number of
elements *
8 bytes

array of
uint64

Array of acquisition times for the first
beam of each scan in the current module
in µs. The device's internal time base is
used or, if the sensor offers the feature,
the time set externally. The length of the
array is numberOfLinesInModule.

TimeStampStop Number of
elements *
8 bytes

array of
uint64

Array of acquisition times for the last
beam of each scan in the current module
in µs. The device's internal time base is
used or, if the sensor offers the feature,
the time set externally. The length of the
array is numberOfLinesInModule.

Phi Number of
elements *
4 bytes

array of
float32

Array of elevation angles (cf. operating
instructions, Coordinate system section)
in radians of each layer in the current
module. The length of the array is num‐
berOfLinesInModule.

ThetaStart Number of
elements *
4 bytes

array of
float32

Array of azimuth angles in radians for the
first beam of each scan of a layer in the
current module. The length of the array is
numberOfLinesInModule.

ThetaStop Number of
elements *
4 bytes

array of
float32

Array of azimuth angles in radians for the
last beam of each scan of a layer in the
current module. The length of the array is
numberOfLinesInModule.

DistanceScalingFactor 4 bytes float32 This factor is used to scale the distance
values in the beam data to allow the
display of values over 65,535 mm with
16 bits or alternatively a sub-millimeter
resolution.
Formula: d_mm_external = DistanceSca‐
lingFactor * d
d is the distance value contained in the
beam data
d_mm_external is the distance value in
mm which can be derived from a con‐
sumer of streaming data from d.
If the scaling factor ≥ 1, integers (1, 2,
3, ...) are always entered so that integer
values are used for the conversion.

NextModuleSize 4 bytes uint32 Size of the next module, or 0 if the cur‐
rent module is the last one. This value
is important when reading the data using
the principle in table 10, see figure 9.

Reserved 1 byte uint8 –

DataContentEchos 1 byte uint8 The individual bits of this byte describe
which data are available in that part of
the measurement data that is acquired
per echo, e.g., distance or RSSI, see
table 12, page 18.

COMPACT FORMAT 5

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 17
Subject to change without notice

Name Size Type Description

DataContentBeams 1 byte uint8 The individual bits of this byte describe
which data are available in that part
of the measurement data that is only
acquired once per beam, e.g., azimuth
angle or beam properties, see table 13,
page 19.

Reserved 1 byte uint8 Fill byte to ensure the metadata has a
32-bit alignment.

Data package

Header

size: 32 Bytes

CRC

2660

NextModuleSize

2660

NextModuleSize

3000

NextModuleSize

3000

NextModuleSize

0

NextModuleSize

1° scan layers

Module 0

size: 2660 Bytes

1° scan layers

Module 1

size: 2660 Bytes

HighRes scan layer

Module 0

size: 3000 Bytes

HighRes scan layer

Module 1

size: 3000 Bytes

Figure 9: Example of the NextModuleSize field. The modules with the 1° layers are 2,660 bytes
in size, the modules with the HighRes layers are 3,000 bytes in size. The value for NextModule‐
Size in the header as well as in the first serialized module is therefore 2660, and in the two
subsequent modules 3000. In the last serialized module the value is 0, because no further
module follows.

The bit indices in the DataContentEchos and DataContentBeams bytes are derived as
described in section 6.4.

Table 12: Description of the bits of DataContentEchos

Bit index Value

0 1 if distance data is available, otherwise 0.

1 1 if RSSI data is available, otherwise 0.

2 Reserved

3 Reserved

4 Reserved

5 COMPACT FORMAT

18 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

Bit index Value

5 Reserved

6 Reserved

7 Reserved

Table 13: Description of the bits of DataContentBeams

Bit index Value

0 1 if additional beam properties are available, otherwise 0.

1 1 if azimuth angles per beam are available, otherwise 0.

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

5.3.2 Measurement data

Each beam of a scan is represented as a tuple whose elements are represented by the
bytes DataContentEchos (table 12) and DataContentBeams (table 13) in the metadata.
First are the contents per echo included as described by DataContentEchos. These
appear sequentially per echo as shown. This is then followed by the contents included
as described by DataContentBeams. The representation of the respective contents is
shown in the following table.

Table 14: Representation of the individual measurement data fields

Content Size Type Representation

Distance 2 bytes uint16 uint16 integers in mm

RSSI 2 bytes uint16 see "Representation of RSSI values",
page 24

Beam characteristics
(“Properties”)

1 byte uint8 see "Representation of beam characteris‐
tics (“Properties”)", page 25

Azimuth angle (theta) 2 bytes uint16 uint16 Integers, where the following con‐
version applies:

• a_uint: Angle value as integer

• a_rad: Angle value in radians.

• a_rad = (a_uint – 16384)/ 5215

This conversion ensures that the maxi‐
mum allowed value range of [-pi, 3*pi] is
fully utilized.

distance_0 rssi_0 distance_1 rssi_1 distance_2 rssi_2 thetaproperties

echo 0 echo 1 echo 2

Described by

DataContentEchoes

Described by

DataContentBeams

Figure 10: Example representation of a beam as a tuple. There are three echoes available.
Both distance and RSSI values exist per echo, i.e., the corresponding bits of DataContentEcho
have the value 1. Values for beam properties and azimuth angle are also available, i.e., the
corresponding bits of DataContentBeams have the value 1.

COMPACT FORMAT 5

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 19
Subject to change without notice

The individual tuples are located directly behind each other in the data stream. Their
sequence is described in figure 11. Here the data is arranged in a matrix where
the individual layers of the current module correspond to the rows, and the columns
correspond to the measurement beams of the scans for the individual layers. (Note:
This arrangement assumes that all scans of a module have the same length, which
is ensured by the division into modules as described in section 5.2.) The order of
the beam tuples in the data stream is determined by sweeping the matrix shown
in figure 11 column by column, i.e., the tuples of beam index 0 for all layers are
incorporated into the data stream first, then the tuples for beam index 1, etc.

Line/ layer

index

Beam index

0,0 0,1 0,2 0,3 0,4

Line/ layer

index

Beam index

1,0

2,0

3,0

4,0

5,0

6,0

7,0

1,1,

2,1

3,1

4,1

5,1

6,1

7,1

1,2

2,2

3,2

4,2

5,2

6,2

7,2

1,4

2,3

3,3,

4,3

5,3

6,3

7,3

1,4

2,4

3,4

4,4

5,4

6,4

7,4

0,0 0,1 0,2 0,3 0,4

Module with multiple layers

Module with one single layer

Figure 11: Sequence of data tuples in the memory for the individual beams.Top: Module with
only one layer. Bottom: Module with 8 layers. The individual layers of a module correspond to the
rows, and the individual measurement beams correspond to the columns. For linear storage of
the data in the data package, this matrix is then swept column by column, as indicated by the
gray arrows in the figure.

The following correspondences exist between the metadata in table 11 and the meas‐
urement data as shown in figure 11:

• The elevation angle of the data in row i is Phi[i] from the metadata.
• The azimuth angle of the first beam in line i is ThetaStart[i]
• The azimuth angle of the last beam in line i is ThetaStop[i]

5 COMPACT FORMAT

20 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

Line 0/ Phi[0]

Line 1/ Phi[1]

Line 2/ Phi[2]

Line 3/ Phi[3]

Line 4/ Phi[4]

Line 5/ Phi[5]

Line 6/ Phi[6]

Line 7/ Phi[7]

thetaStart[...

thetaStart[...

thetaStart[...

ThetaStart[3]

ThetaStart[4]

ThetaStart[5]

ThetaStart[6]

ThetaStart[7]

ThetaStart[0]

ThetaStart[1]

ThetaStart[2]

ThetaStop[4]

ThetaStop[5]

ThetaStop[6]

ThetaStop[7]

ThetaStop[0]

ThetaStop[1]

ThetaStop[2]

ThetaStop[3]

Figure 12: Correspondences between measurement data and metadata using the example of
a module with 8 layers. Each line from figure 11 corresponds to a layer in figure 10. The first
and last azimuth angles of each layer, and the elevation angles of each layer are in the Phi,
ThetaStart and ThetaStop fields.

NOTE LayerIds, which define the individual layers by their elevation angle as in the
MSGPACK format (see table 6, page 10), are not used in the Compact format. The row
index of the matrix with the data relates only to the current module and is therefore
generally not the same as the LayerId.

5.4 IMU format

The IMU data shall be streamed in the following format:

Word Value Size Data type Unit Description

0 Start of
Frame

4 bytes uint32 Always four stx charac‐
ters: \x2\x2\x2\x2.

1 Command
ID

4 bytes uint32 Defines the type of the
transmitted telegram.
For IMU data serializa‐
tion the commandId is
2.

2 Telegram
version

4 bytes uint32 Version of the serial‐
ization telegram. For
the telegram struc‐
ture described in this
requirement the Tele‐
gram version is 1.

3 Acceleration
x

4 bytes float m/s² Acceleration along the
x-axis including grav‐
ity; gravity is not sub‐
tracted from the data.

COMPACT FORMAT 5

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 21
Subject to change without notice

Word Value Size Data type Unit Description

4 Acceleration
y

4 bytes float m/s² Acceleration along the
y-axis including grav‐
ity; gravity is not sub‐
tracted from the data.

5 Acceleration
z

4 bytes float m/s² Acceleration along the
z-axis including grav‐
ity; gravity is not sub‐
tracted from the data.

6 Angular
velocity x

4 bytes float rad/s

7 Angular
velocity y

4 bytes float rad/s

8 Angular
velocity z

4 bytes float rad/s

9 Orientation
quaternion w

4 bytes float 1

10 Orientation
quaternion x

4 bytes float 1

11 Orientation
quaternion y

4 bytes float 1

12 Orientation
quaternion z

4 bytes float 1

13
14

IMU sensor
time stamp

8 bytes uint64 µs Sensor system time
since 1.1.1970 00:00
in UTC.

15 Check sum 4 bytes uint32 CRC32 of all words
except the checksum.

The word size shall be 32 Bits. All words shall have little endian byte ordering.

The data shall be given in the following coordinate system which is based on the
DIN 70000 system: the x-axis lies on the 90° beam of the 0° layer. The y-axis is
perpendicular to the x-axis and lies in the 0° layer. The y-values are rising in the counter
clock wise rotation direction (right handed system). The z-axis is perpendicular to the
x-y-plane and the device top points to rising z-values.

5 COMPACT FORMAT

22 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

6 Definitions applicable to both data formats

6.1 Azimuth angle

The azimuth angles (also called theta angles in the data formats) of a scan are always
monotonically increasing.

For sensors that have a horizontal measuring field of 360°, this means in particular
that the angles of a segment can be greater than 180° if the segment exceeds the
+180°/-180° limit:

180°/ -180°

-90°

0°

90°

160°
189°

-170°

-141°

Figure 13: Azimuth angle for different segments. The angular range of the blue segment exceeds
the 180°/-180° limit. Since the azimuth angles are nevertheless monotonically ascending,
angles > 180° are used here. The green segment already starts in the negative angular range,
which is why the azimuth angles are negative here.

6.2 Segment counter

The segment counter (SegmentCounter in table 6 and table 11) counts the segments
in a frame. A frame is all the data recorded in one revolution. The segment counter is
a value between 0 and < number of segments per revolution > - 1 and increases with
increasing azimuth angle.

An exception to this is shown in figure 14: Here the beams of a segment exceed the
+180°/-180° limit so most azimuth angles of this segment have values > 180°, see
"Azimuth angle", page 23. (This would correspond to negative values close to -180°
when normalized to (-180°, +180°].) If the majority of the values of the segment are
> 180°, this segment is assigned the segment counter 0 again. This only applies to the
multiScan due to the specific arrangement of the lasers in the measuring module.

180° -180°

-90°

0°

-90

computed counter = 12

new counter = 12

module 12 = 0
computed counter = 11

179°

209°

Figure 14: Segment counter for a segment (blue), the majority of whose azimuth angles are
> 180°. Assuming a segment size of 30°, the segment counter would be 12 if it were calculated
only on the basis of the angle values. The majority of the blue segment is already in the next
frame, however, which is why it is assigned the segment number 0.

DEFINITIONS APPLICABLE TO BOTH DATA FORMATS 6

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 23
Subject to change without notice

6.3 Representation of RSSI values

RSSI values are represented as a 16-bit integer (uint16). The RSSI is a dimensionless
quantity. The values can fall within the complete value range between 0 and 216 – 1,
whereby it is possible that the maximum value is rarely or even never reached. The
RSSI is generally also not standardized and therefore not exactly comparable between
devices.

6.4 Representation of bit fields

For both the DataContentEchos and DataContentBeams values and for the beam prop‐
erties (see "Representation of beam characteristics (“Properties”)", page 25), bytes
are interpreted as bit fields in which information about the states of the individual bits
is encoded.

The relationship between the representation of the byte as a decimal value and its bit
indices is as follows:

• Let bi with i = 0,...,k be the bits with index i in the binary representation of a value
v with, bi ∈ {0,1}.

• The decimal representation vdec of v is then given as vdec = ∑i=0..7 bi * 2i

Examples:

Let v be an 8-bit value with decimal representation vdec and hexadecimal representa‐
tion vhex. Let the bit indices of v be b0 to b7.

Table 15: Examples of the relationship between the bit indices and the decimal representation of
a value

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 1 1 1 1 1 1 1

27 26 25 24 2³ 2² 21 20

vdec 128 64 32 16 8 4 2 1

Table 16: Examples for the decimal value 128.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 0 0 0 0 0

27 26 25 24 2³ 2² 21 20

vdec 128

vhex 0x80

Table 17: Examples for the decimal value 1.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 0 1

27 26 25 24 2³ 2² 21 20

vdec 1

vhex 0x01

Table 18: Examples for the decimal value 130.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 0 0 0 1 0

27 26 25 24 2³ 2² 21 20

vdec 130

vhex 0x82

6 DEFINITIONS APPLICABLE TO BOTH DATA FORMATS

24 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

6.5 Representation of beam characteristics (“Properties”)

The additional characteristics of a beam are called “properties” here. They are encoded
in a bit field according to "Representation of bit fields", page 24. The meaning of the
individual bit indices is shown in the following table.

Table 19: Description of the bits of the field for beam characteristics (“Properties”)

Bit index Content

0 1 if a reflector was detected for any echo on this beam, otherwise
0.

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

If the reflector bit (bit with index 0) is set for a beam, it can be assumed that the last
echo measured for this beam came from a reflector. It is virtually impossible physically
for a reflector to be measured for an echo and then be followed by another on the same
beam.

DEFINITIONS APPLICABLE TO BOTH DATA FORMATS 6

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 25
Subject to change without notice

7 Behavior of serialization for data reduction

Different data reduction options (e.g., limiting the number of available echoes, limiting
the azimuth angular range, limiting the layers used) affect the data output in different
ways.

The behavior is somewhat different for the MSGPACK format and the Compact format.
The data reduction can be configured either via SOPASair or via the corresponding
telegrams (see www.sick.com/8014631). These effects are described in this section.

7.1 Behavior in relation to the number of available echoes

Multi-echo capable sensors usually provide the option to define the number of available
echoes by means of an echo filter. This then affects the data output as follows:

All echoes setting

If the sensor is configured so that all echoes are available, then all theoretically avail‐
able echoes are also always serialized, regardless of the number of echoes actually
received per beam. If fewer echoes than theoretically available are received on a beam,
the measured values for the remaining echoes (distance and RSSI) are padded with 0
(see also the example in table 20).

Single echo setting

If the sensor is configured so that only a single echo is available (e.g., last or first echo),
only the data for this echo is serialized.

Table 20: Example data output for different numbers of available echoes.

All echoes Last echo

Angles Distance echo
0

Distance echo
1

Distance echo
2

Distance

42° 3,422 mm 5,022 mm 0 mm 5,022 mm

43° 3,420 mm 0 mm 0 mm 3,420 mm

44° 0 mm 0 mm 0 mm 0 mm

Example:
• The sensor is capable of measuring a maximum of 3 echoes, and it is configured

to output all echoes (All Echoes columns) or the last echo (Last Echo column).
• For the angle 42° the measured distance is 3,422 mm for echo 0 and 5,022mm

for echo 1, for the angle 43° the measured distance is 3,420 mm for echo 0, and
for angle 44° no valid distance is measured.

• The following distance values are then output (RSSI values are omitted for reasons
of clarity, they are treated in the same way as distance values):

7.2 Behavior when restricting the azimuth angular range

If a restricted azimuth angular range is configured for the data output, it is possible for
complete segments to lie outside the configured angular range. These segments are
not serialized and therefore not transmitted from the device to the client.

For sensors with different physical measuring modules, for example the multiScan1xx,
it should be noted that complete segments only lie outside the configured angular
range if this applies to the data of both measuring modules. If data from one measuring
module only lies within the available angular range, the segment will still be output.
The layers of the other measuring module for which the data are outside the available
angular range, are then treated as follows:

7 BEHAVIOR OF SERIALIZATION FOR DATA REDUCTION

26 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

http://www.sick.com/8014631

MSGPACK format

If the data of a layer is completely outside the configured angular range, that layer will
not be output, see "Behavior when reducing the available layers", page 27. As soon as
at least one beam is within the configured angular range, both the distance value and
the RSSI value are set to 0 for the remaining beams of the segment, and the azimuth
angle remains unchanged.

Compact format

If the data of a layer are completely outside the configured angular range, then in
contrast to the MSGPACK format the distance values and the RSSI values are set to 0
for that layer, and the azimuth value is output unchanged. As soon as at least one beam
is within the configured angular range, the procedure is the same as for the MSGPACK
format: For the remaining beams of the segment, both the distance value and the RSSI
value are set to 0, and the azimuth angle remains unchanged.

The different behavior for the MSGPACK format and the Compact format is due to the
fact that in the case of the Compact format, the data structure needs to remain the
same for each segment so the data can be easily interpreted (e.g., via memcpy into a
structure). This is not necessary with the MSGPACK format, where the data has to be
parsed anyway. A more extensive data reduction is therefore possible in this case.

Parameterized

angle

range

scan layers

of measuring module 0

scan layers

of measuring module 1

MSGPACK and Compact:

Distance and RSSI are filled with 0

MSGPACK: no output

Compact: Distance and RSSI are filled with 0

Figure 15: Handling of data that is outside the configured angular range. Data from 4 layers
are shown, all belonging to one segment but to different measuring modules. red and violet:
measuring module 0, blue and green: measuring module 1. With no restriction of the angular
range, the data would be output for all layers. With the angular range restriction shown (red circle
segment), the data is output as follows: The blue layer and the green layer are not output in the
MSGPACK format, and in the Compact format distance and RSSI are filled with 0. Distance and
RSSI values in the part of the red layer outside the configured angular range are padded with 0
in the MSGPACK format and Compact format.

7.3 Behavior when reducing the available layers

For multilayer sensors, for example the multiScan1xx, it is possible for individual layers
to fall within the measuring range excluded by data reduction. This can occur, for
example, when using a layer filter. The layers for the complete azimuth angular range
are excluded. The case where the data for a layer are outside the measuring range only
in individual segments is described in "Behavior when restricting the azimuth angular
range", page 26.

For the MSGPACK format, this affects the serialization as follows:
• Scan type data for the layers that have been excluded will no longer appear in the

SegmentData array (see table 6, page 10).
• The LayerId array (see table 6, page 10) is adjusted accordingly, i.e., the IDs of the

layers that are no longer present are removed.

BEHAVIOR OF SERIALIZATION FOR DATA REDUCTION 7

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 27
Subject to change without notice

For the Compact format, this affects the serialization as follow:
• The data for the layers that were excluded are removed from the measurement

data block, i.e., the corresponding rows of the matrix in figure 11 are removed.
• The metadata in the metadata block that are associated with this line will be

removed as well. The arrays affected are ThetaStart, ThetaStop, TimeStampStart,
TimeStampStop and Phi in table 11.

• If all layers of a module are outside the configured measuring range, the entire
module (metadata and measurement data) is not output.

7 BEHAVIOR OF SERIALIZATION FOR DATA REDUCTION

28 T E C H N I C A L I N F O R M A T I O N | Data format description 8028133/1KK1/2023-07-20 | SICK
Subject to change without notice

BEHAVIOR OF SERIALIZATION FOR DATA REDUCTION 7

8028133/1KK1/2023-07-20 | SICK T E C H N I C A L I N F O R M A T I O N | Data format description 29
Subject to change without notice

Detailed addresses and further locations at www.sick.com

Australia

Phone +61 (3) 9457 0600

1800 33 48 02 – tollfree

E-Mail sales@sick.com.au

Austria

Phone +43 (0) 2236 62288-0

E-Mail office@sick.at

Belgium/Luxembourg

Phone +32 (0) 2 466 55 66

E-Mail info@sick.be

Brazil

Phone +55 11 3215-4900

E-Mail comercial@sick.com.br

Canada

Phone +1 905.771.1444

E-Mail cs.canada@sick.com

Czech Republic

Phone +420 234 719 500

E-Mail sick@sick.cz

Chile

Phone +56 (2) 2274 7430

E-Mail chile@sick.com

China

Phone +86 20 2882 3600

E-Mail info.china@sick.net.cn

Denmark

Phone +45 45 82 64 00

E-Mail sick@sick.dk

Finland

Phone +358-9-25 15 800

E-Mail sick@sick.fi

France

Phone +33 1 64 62 35 00

E-Mail info@sick.fr

Germany

Phone +49 (0) 2 11 53 010

E-Mail info@sick.de

Greece

Phone +30 210 6825100

E-Mail office@sick.com.gr

Hong Kong

Phone +852 2153 6300

E-Mail ghk@sick.com.hk

Hungary

Phone +36 1 371 2680

E-Mail ertekesites@sick.hu

India

Phone +91-22-6119 8900

E-Mail info@sick-india.com

Israel

Phone +972 97110 11

E-Mail info@sick-sensors.com

Italy

Phone +39 02 27 43 41

E-Mail info@sick.it

Japan

Phone +81 3 5309 2112

E-Mail support@sick.jp

Malaysia

Phone +603-8080 7425

E-Mail enquiry.my@sick.com

Mexico

Phone +52 (472) 748 9451

E-Mail mexico@sick.com

Netherlands

Phone +31 (0) 30 204 40 00

E-Mail info@sick.nl

New Zealand

Phone +64 9 415 0459

0800 222 278 – tollfree

E-Mail sales@sick.co.nz

Norway

Phone +47 67 81 50 00

E-Mail sick@sick.no

Poland

Phone +48 22 539 41 00

E-Mail info@sick.pl

Romania

Phone +40 356-17 11 20

E-Mail office@sick.ro

Singapore

Phone +65 6744 3732

E-Mail sales.gsg@sick.com

Slovakia

Phone +421 482 901 201

E-Mail mail@sick-sk.sk

Slovenia

Phone +386 591 78849

E-Mail office@sick.si

South Africa

Phone +27 10 060 0550

E-Mail info@sickautomation.co.za

South Korea

Phone +82 2 786 6321/4

E-Mail infokorea@sick.com

Spain

Phone +34 93 480 31 00

E-Mail info@sick.es

Sweden

Phone +46 10 110 10 00

E-Mail info@sick.se

Switzerland

Phone +41 41 619 29 39

E-Mail contact@sick.ch

Taiwan

Phone +886-2-2375-6288

E-Mail sales@sick.com.tw

Thailand

Phone +66 2 645 0009

E-Mail marcom.th@sick.com

Turkey

Phone +90 (216) 528 50 00

E-Mail info@sick.com.tr

United Arab Emirates

Phone +971 (0) 4 88 65 878

E-Mail contact@sick.ae

United Kingdom

Phone +44 (0)17278 31121

E-Mail info@sick.co.uk

USA

Phone +1 800.325.7425

E-Mail info@sick.com

Vietnam

Phone +65 6744 3732

E-Mail sales.gsg@sick.com

SICK AG | Waldkirch | Germany | www.sick.com

80
28

13
3/

1K
K1

/2
02

3-
07

-2
0/

en

	Technical information
	Contents
	1 Glossary
	2 General information on the transmission of measurement data
	3 Parameterization of the data output via telegrams
	3.1 Selecting the data output format
	3.2 Communication settings for data transmission
	3.3 Activating the data transmission
	3.4 Example

	4 MSGPACK format
	4.1 Framing
	4.2 MSGPACK keywords
	4.3 Serialization of a segment
	4.3.1 Notation used
	4.3.2 Serialization of the “Scan segment” class
	4.3.3 Serialization of the “Scan” class
	4.3.4 Serialization of arrays

	5 Compact format
	5.1 Framing
	5.2 Division of a segment into modules
	5.3 Serialization of modules
	5.3.1 Meta data
	5.3.2 Measurement data

	5.4 IMU format

	6 Definitions applicable to both data formats
	6.1 Azimuth angle
	6.2 Segment counter
	6.3 Representation of RSSI values
	6.4 Representation of bit fields
	6.5 Representation of beam characteristics (“Properties”)

	7 Behavior of serialization for data reduction
	7.1 Behavior in relation to the number of available echoes
	7.2 Behavior when restricting the azimuth angular range
	7.3 Behavior when reducing the available layers

