deTem2 Core Ex II 3GD

Safety multibeam sensor

Described product

deTem2 Core Ex II 3GD

Manufacturer

SICK AG Erwin-Sick-Str. 1 79183 Waldkirch Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of SICK AG.

The trademarks stated in this document are the property of their respective owner.

© SICK AG. All rights reserved.

Original document

This document is an original document of SICK AG.

Contents

1	About this document					
	1.1	Function	n of this document	6		
	1.2	Scope				
	1.3	Target groups of these operating instructions				
	1.4	Addition	al information	6		
	1.5	Symbols and document conventions				
2	Safety information					
	2.1	General	safety notes	8		
	2.2	Intended use				
	2.3	Improper use				
	2.4	Requirements for the qualification of personnel				
3	Prod	duct des	cription	11		
	3.1	Setup a	nd function	11		
	3.2	Product	characteristics	12		
		3.2.1	Device overview	12		
		3.2.2	Status indicators	12		
	3.3	Example	e applications	14		
4	Proj	Project planning				
	4.1	Manufacturer of the machine				
	4.2	Operating entity of the machine				
	4.3	Design		15		
		4.3.1	Minimum distance from the hazardous point	16		
		4.3.2	Minimum distance from reflective surfaces	18		
		4.3.3	Protection against interference from systems in close proximity to each other	20		
	4.4	Integrati	ing into the electrical control	20		
		4.4.1	Restart interlock	22		
		4.4.2	External device monitoring (EDM)	23		
		4.4.3	Connection diagrams	24		
	4.5	Testing	plan	24		
		4.5.1	Test rod check	25		
		4.5.2	Visual check of the machine and the protective device	27		
5	Mou	Mounting				
	5.1			28		
	5.2	Unpacking				
	5.3	5.3 Mounting				
		5.3.1	Mounting the QuickFix bracket	31		
		5.3.2	Mounting the FlexFix bracket	33		
		5.3.3	Mounting the replacement bracket	36		
	5.4	Affixing	labels	36		

6	Electrical installation					
	6.1	L Safety				
	6.2	System connection (M12, 5-pin)	38			
	6.3	System connection via connection cable (M12, 5-pin to 8-pin)	39			
7	Com	Commissioning				
	7.1	Safety				
	7.2	Overview				
	7.3	Switching on				
	7.4	Sender and receiver alignment	41			
		7.4.1 Aligning the sender and receiver	41			
		7.4.2 Aligning the sender, receiver, and deflector mirror	42			
		7.4.3 Alignment with the QuickFix bracket	43			
		7.4.4 Alignment with the FlexFix bracket or with the upgrade bracket	44			
		7.4.5 Indication of the alignment quality	45			
	7.5	Check during commissioning and modifications	46			
8	Operation					
	8.1	Safety	47			
	8.2	Regular thorough check				
9	Maintenance 4					
	9.1	Regular cleaning				
	9.2	Regular thorough check				
10	Trou	Troubleshooting				
	10.1	Safety	50			
	10.2	Diagnostic LEDs	50			
		10.2.1 Fault indicators	50			
11	Decommissioning					
	11.1	Disposal	53			
12	Tech	Technical data				
	12.1	Data sheet 5				
	12.2	Table of weights	56			
	12.3	Dimensional drawings	57			
13		Ordering information				
		Scope of delivery 5				
	13.2	2 Ordering information 5				
14	Accessories					
	14.1	L Brackets 5				
	14.2	2 Mounting accessories 60				
	14.3	Connectivity	60			

	14.4	Alignment aid6		
	14.5	Deflecto	r mirrors	62
		14.5.1	Function and use	62
		14.5.2	Change in scanning range using deflector mirrors	62
		14.5.3	Deflector mirror – ordering information	62
		14.5.4	Deflector mirror PNS75 - ordering information	62
		14.5.5	Deflector mirror PNS125 - ordering information	63
	14.6	Mirror co	olumns	63
	14.7	Device c	olumns	63
	14.8	Accesso	ries for mirror columns and device columns	63
	14.9	Cleaning	agent	64
	14.10	Test rods	5	64
15	Anne	ex		65
	15.1 Conformities and certificates		ities and certificates	65
		15.1.1	EU declaration of conformity	65
		15.1.2	UK declaration of conformity	65
	15.2	Note on	standards	65
	15.3	Checklis	t for initial commissioning and commissioning	67
16	List o	of figures6		
17	List of tables			69

1 About this document

1.1 Function of this document

These operating instructions contain the information needed during the life cycle of the safety multibeam sensor.

Operating instructions of the safety multibeam sensor must be made available to all people who work with the device.

Please read these operating instructions carefully and make sure that you understand the content fully before working with the safety multibeam sensor.

1.2 Scope

Product

This document applies to the following products:

- Product code: deTem2 Core Ex II 3GD
- "Operating instructions" type label entry: 8021856

Document identification

Document part number:

- This document: 8021858
- Available language versions of this document: 8021856

You can find the current version of all documents at www.sick.com.

1.3 Target groups of these operating instructions

Some chapters of these operating instructions are intended for certain target groups. However, the entire operating instructions are relevant for intended use of the product.

Table 1: Target groups and selected chapters of these operating instructions

Target group	Chapters of these operating instructions
Project developers (planners, developers, designers)	"Project planning", page 15 "Technical data", page 54 see "Accessories", page 59
Installers	"Mounting", page 28
Electricians	"Electrical installation", page 37
Safety experts (such as CE authorized representatives, com- pliance officers, peo- ple who test and approve the applica- tion)	"Project planning", page 15 "Commissioning", page 40 "Technical data", page 54 "Checklist for initial commissioning and commissioning", page 67
Operators	"Operation", page 47 "Troubleshooting", page 50
Maintenance personnel	"Maintenance", page 48 "Troubleshooting", page 50

1.4 Additional information

www.sick.com

The following information is available on the Internet:

- Data sheets and application examples
- · CAD data and dimensional drawings
- Certificates (e.g. EU declaration of conformity)
- Guide for Safe Machinery Six steps to a safe machine

1.5 Symbols and document conventions

The following symbols and conventions are used in this document:

Safety notes and other notes

DANGER

Indicates a situation presenting imminent danger, which will lead to death or serious injuries if not prevented.

WARNING

Indicates a situation presenting possible danger, which may lead to death or serious injuries if not prevented.

CAUTION

Indicates a situation presenting possible danger, which may lead to moderate or minor injuries if not prevented.

NOTICE

Indicates a situation presenting possible danger, which may lead to property damage if not prevented.

NOTE

Indicates useful tips and recommendations.

Instructions to action

- ▶ The arrow denotes instructions to action.
- 1. The sequence of instructions for action is numbered.
- 2. Follow the order in which the numbered instructions are given.
- ✓ The check mark denotes the result of an instruction.

LED symbols

These symbols indicate the status of an LED:

- O The LED is off.
- The LED is flashing.
- The LED is illuminated continuously.

Sender and receiver

These symbols indicate the sender and receiver of the device:

- The symbol indicates the sender.
- The symbol indicates the receiver.

2 Safety information

2.1 General safety notes

DANGER

The product can not offer the expected protection if it is integrated incorrectly.

- Plan the integration of the product in accordance with the machine requirements (project planning).
- Implement the integration of the product in accordance with the project planning.

DANGER

Death or severe injury due to electrical voltage and/or an unexpected startup of the machine

- Make sure that the machine is (and remains) disconnected from the voltage supply during mounting and electrical installation.
- Make sure that the dangerous state of the machine is and remains switched off.

DANGER

Improper work on the product

A modified product may not offer the expected protection if it is integrated incorrectly.

Apart from the procedures described in this document, do not repair, open, manipulate or otherwise modify the product.

WARNING

Risk of ineffectiveness of the protective device

Please observe the following information to ensure safe and correct use of the device.

- Special national and international regulations and guidelines apply for the mounting, use, commissioning, and regular technical inspection of electrical devices in explosion-hazardous areas, in particular ATEX Directive 2014/34/EU and the IECEx scheme. Manufacturers of and entities operating machines using the safety multibeam sensor are responsible for ensuring that all applicable safety regulations and guidelines are complied with.
- These operating instructions must be made available to the operator of the machine on which the device is used. Qualified safety personnel must instruct the operator on how to use the device. The operator must also be directed to read and follow the operating instructions.

DANGER

Risk of ignition

Failure to observe this instruction can result in a risk of ignition from potential sparking.

Ensure that only accessories that are approved for explosion-hazardous areas are used.

NOTICE

UV radiation can reduce the service life and resistance of the front screen. When used in an explosion proof area, the front screen may not be exposed to any UV radiation (e.g., sunlight).

Select a mounting position in which the front screen is not exposed to UV radiation.

NOTICE

Mechanical loads

The device passes the impact test required by the applicable standards.

Plastic device components must not be subjected to mechanical loads greater than 4 joules.

Transparent parts (front screen) must not be subjected to mechanical loads greater than 2 joules.

2.2 Intended use

The deTem2 Core Ex II 3GD safety multibeam sensor is an electro-sensitive protective device (ESPE) and is suitable for the following applications:

- Single-sided access protection
- Multi-sided access protection

The product may be used in safety functions.

The deTem2 Core Ex II 3GD safety multibeam sensor must only be used within the limits of the prescribed and specified technical data and operating conditions at all times.

Any instance of improper use, incorrect modification, or manipulation of the deTem2 Core Ex II 3GD safety multibeam sensor shall void any warranty provided by SICK AG: furthermore, SICK AG shall not accept any responsibility or liability for any resulting damage and consequential damage.

2.3 Improper use

The safety multibeam sensor works as an indirect protective measure and cannot provide protection from pieces thrown from the application nor from emitted radiation. Transparent objects are not detected.

Among others, the deTem2 Core Ex II 3GD safety multibeam sensor is not suitable for the following applications:

- Outdoors
- Underwater
- At altitudes over 3.000 m above sea level
- In environments with increased levels of ionizing radiation

2.4 Requirements for the qualification of personnel

The protective device must be planned in, installed, connected, commissioned, and serviced by qualified safety personnel only.

Project planning

You need safety expertise to implement safety functions and select suitable products for that purpose. You need expert knowledge of the applicable standards and regulations.

Mounting, electrical installation and commissioning

You need suitable expertise and experience. You must be able to assess if the machine is operating safely.

Operation and maintenance

You need suitable expertise and experience. You must be instructed in machine operation by the machine operator. For maintenance, you must be able to assess if the machine is operating safely.

3 **Product description**

3.1 Setup and function

Overview

The deTem2 Core Ex II 3GD safety multibeam sensor is an electro-sensitive protective device (ESPE) consisting of a sender and receiver.

Parallel infrared light beams between the sender and receiver protect the hazardous area. When one or more light beams are completely interrupted, the safety multibeam sensor reports the interruption in the light path to the secure output signal switching devices (OSSDs) by a signal change. The machine or its control must safely analyze the signals (for example using a safe control or safety relays) and stop the dangerous state.

Sender and receiver automatically synchronize themselves optically. An electrical connection between both components is not required.

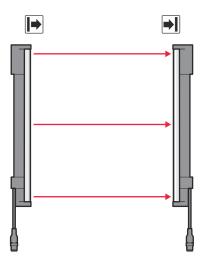


Figure 1: Sender and receiver

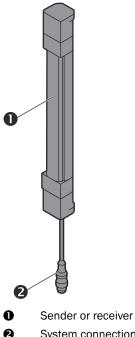
Beam separation and number of beams

The beam separation is the distance between two adjacent light beams, measured from the center of one beam to the center of the next.

The beam separation and number of beams depend on the device variant.

Scanning range

The scanning range is the maximum dimension of the light path between sender and receiver.


The scanning range is reduced by using deflector mirrors.

Further topics

- "Data sheet", page 54
- "Deflector mirrors", page 62

3.2 **Product characteristics**

3.2.1 **Device overview**

System connection

3.2.2 **Status indicators**

Overview

The sender and receiver LEDs indicate the operational status of the safety multibeam sensor.

Sender indicators

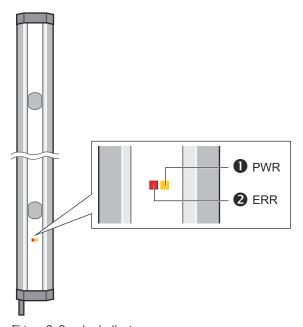


Figure 2: Sender indicators

Two light emitting diodes on the sender indicate the operational status:

Position	LED color	Display	Labeling
0	Yellow	Status indicator	PWR
0	Red	Fault indicator	ERR

Receiver indicators

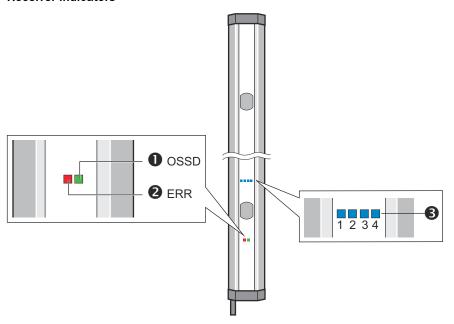


Figure 3: Receiver indicators

Six light emitting diodes on the receiver indicate the operational status:

Position	LED color	Display	Labeling
0	Red/green	OSSD status	OSSD
0	Red	Fault indication	ERR
€	Blue	Alignment quality	1, 2, 3, 4

The blue alignment quality light emitting diodes in combination with the red flashing ERR LED also denote faults.

Further topics

"Diagnostic LEDs", page 50

Example applications 3.3

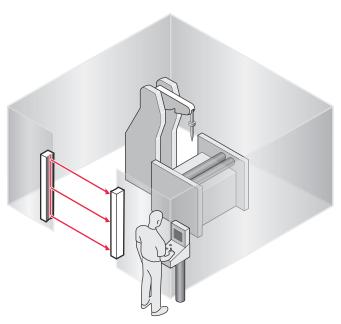


Figure 4: Single-sided access protection

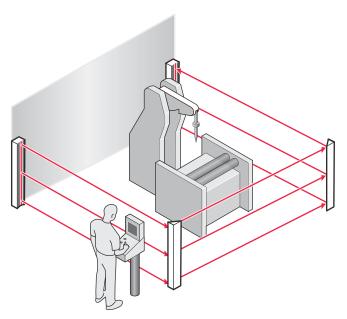


Figure 5: Multi-sided access protection

4 Project planning

4.1 Manufacturer of the machine

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- ▶ Use of the safety multibeam sensor requires a risk assessment. Check whether additional protective measures are required.
- Comply with the applicable national regulations derived from the application (e.g., work safety regulations, safety rules, or other relevant safety guidelines).
- ▶ Do not combine the components of the safety multibeam sensor with components from other safety multibeam sensor.
- Apart from the procedures described in this document, the components of the safety multibeam sensor must not be opened.
- ► The components of the safety multibeam sensor must not be tampered with or changed.
- Improper repair of the protective device can lead to a loss of the protective function. Do not carry out any repairs on the device components.

4.2 Operating entity of the machine

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- ► Changes to the electrical integration of the safety multibeam sensor in the machine controller and changes to the mechanical mounting of the safety multibeam sensor necessitate a new risk assessment. The results of this risk assessment may require the entity operating the machine to meet the obligations of a manufacturer.
- Apart from the procedures described in this document, the components of the safety multibeam sensor must not be opened.
- ► The components of the safety multibeam sensor must not be tampered with or changed.
- ▶ Improper repair of the protective device can lead to a loss of the protective function. Do not carry out any repairs on the device components.

4.3 Design

Overview

This chapter contains important information about the design.

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Make sure that the following design requirements are met so that the safety multibeam sensor can fulfill its protective function.
 - Sender and receiver must be arranged such that persons or parts of the body are reliably detected when they enter the hazardous area.
 - Ensure that nobody can pass under the lowest light beam, pass over the highest light beam, get between two light beams, or pass by the side of the protective device.
 - If people can stay between the protective device and the hazardous point without being detected, check if additional protective measures (e.g., restart interlock) are required.

DANGER

Hazard due to lack of effectiveness of the protective device

Certain types of light radiation can influence the protective device, e.g., light radiation from fluorescent lamps with electronic ballast installed in the path of the beam, or beams from laser pointers directed at the receiver.

▶ If this type of light radiation is present in the environment of the protective device, take additional measures to ensure that the protective device does not become dangerous.

Further topics

"Mounting", page 28

4.3.1 Minimum distance from the hazardous point

A minimum distance must be maintained between the safety multibeam sensor and the hazardous point. This distance is required to prevent a person or part of the body from reaching the hazardous area before the dangerous state of the machine state has completed.

Calculating the minimum distance according to ISO 13855

The calculation of the minimum distance is based on international or national standards and statutory requirements applicable at the place of installation of the machine.

If the minimum distance is calculated according to ISO 13855, then it depends on the following points:

- Machine stopping time (time interval between triggering the sensor function and the end of the machine's dangerous state)
- Response time of the protective device
- Approach speed of personnel
- Type of approach: orthogonal (at right angles)
- Parameters specified based on the application

For the USA (scope of OSHA and ANSI), different regulations may apply, e.g.:

- a) Laws: Code of Federal Regulations, Title 29 (CFR29) Part 1910.217
- b) Standards: ANSI B11.19

Complementary information

Additional information is available in the ISO 13855 standard and in the Guidelines Safe Machinery.

SICK offers a stopping/run-down time measurement service in many countries.

Further topics

"Technical data", page 54

4.3.1.1 Calculating minimum distance from the hazardous point

Important information

DANGER

Minimum distance from the hazardous point is too small

The dangerous state of the machine may not be stopped or not be stopped in a timely manner due to a minimum distance that is too small.

- ► Calculate the minimum distances for the machine in which the safety multibeam sensor is integrated.
- ▶ When mounting the safety multibeam sensor, observe the minimum distance.

Approach

The example shows the calculation of the minimum distance for an orthogonal (at right angles) approach to the safety multibeam sensor. Depending on the application and the ambient conditions, a different calculation may be required (e.g., at a different angle to the direction of approach or an indirect approach).

1. Calculate S using the following formula:

 $S = 1,600 \text{ mm/s} \times T + C$

where:

- S = minimum distance in millimeters (mm)
- T = machine stopping time + response time of the protective device after interruption in the light path in seconds (s)
- C = supplement in accordance with ISO 13855:
 - If it is not possible to reach over the protective device: C = 850 mm
 - If it is possible to reach over the protective device, the value C_{RO} must be used for C in accordance with ISO 13855, provided that this is greater than 850 mm: $C \ge 850$ mm and $C \ge C_{RO}$

The reach/approach speed is already included in the formula.

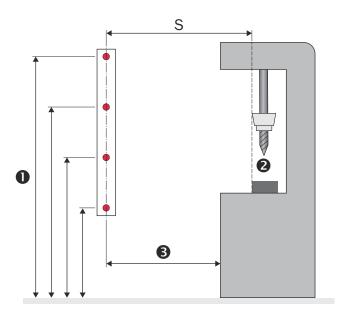


Figure 6: Minimum distance from the hazardous point

- Height of the light beams above ground
- 2 Hazardous point
- Depending on the application and distance, persons must be prevented from standing behind the protective device.

Example calculation

Machine stopping time = 290 ms

Response time after interruption of the light path = 20 ms

T = 290 ms + 20 ms = 310 ms = 0.31 s

 $S = 1,600 \text{ mm/s} \times 0.31 \text{ s} + 850 \text{ mm} = 1,346 \text{ mm}$

4.3.2 Minimum distance from reflective surfaces

Overview

The light beams from the sender may be deflected by reflective surfaces and dispersive media. This can prevent an object from being detected.

Therefore, all reflective surfaces and objects (e.g., material bins, machine table, etc.) must maintain a minimum distance (a) from the light beams. This minimum distance (a) must be maintained on all sides of the light beams. This applies in horizontal, vertical and diagonal directions as well as at the end of the device. The same area must be free of dispersive media (e.g., dust, fog, or smoke).

The minimum distance (a) depends on the distance (D) between sender and receiver.

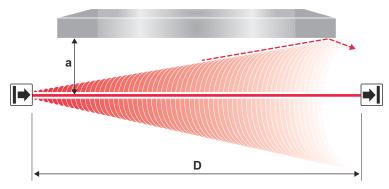


Figure 7: Minimum distance from reflective surfaces

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

Reflective surfaces and dispersive media can prevent persons or parts of the body to be protected from being properly reflected and therefore, they remain undetected.

- Make sure that all reflective surfaces and objects maintain a minimum distance from the light beams.
- ▶ Make sure that no dispersive media (e.g., dust, fog, or smoke) are within the calculated minimum distance from the light beams.

Determining minimum distance to reflective surfaces

The minimum distance can be determined as follows:

- ▶ Determine the distance between sender and receiver D in meters (m).
- ▶ Read the minimum distance a in millimeters (mm) in the graph or calculate using the respective formula to determine the minimum distance to reflective surfaces:

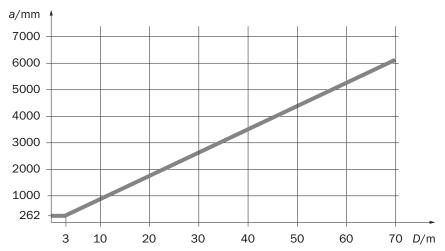


Figure 8: Graph, minimum distance from reflective surfaces

Table 2: Formula for calculating the minimum distance from reflective surfaces

Distance between sender and receiver D in m	Calculating the minimum distance from reflective surfaces a in mm
D ≤ 3 m	a = 262 mm
D > 3 m	a = tan (5°) × 1,000 mm/m × D = 87.49 × 1 mm/m × D

4.3.3 Protection against interference from systems in close proximity to each other

Overview

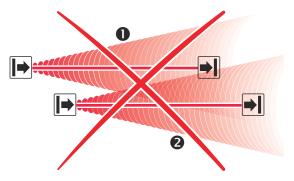


Figure 9: Preventing mutual interference from system $\mathcal D$ and system $\mathcal D$

The infrared light beams of the sender of system ① can interfere with the receiver of system ②. This can disrupt the protective function of system ②. This would mean that the operator is at risk.

Avoid such installation situations or take appropriate action, e.g., install optically opaque partitions or reverse the direction of transmission of a system.

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

Systems of safety multibeam sensor in close proximity to each other can mutually interfere with each other.

 Use suitable measures to prevent interference between systems in close proximity to each other.

4.3.3.1 Using reversed direction of transmission

The direction of transmission of the system ② can be changed during mounting by switching the positions of the sender and receiver. With reversed direction of mounting, the receiver ② is not affected by the infrared light from the sender ①.

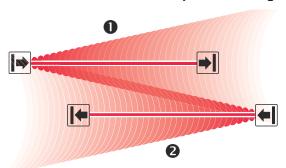


Figure 10: Trouble-free operation due to reversed direction of transmission of system ${\it 0}$ and system ${\it 2}$

4.4 Integrating into the electrical control

This chapter contains important information about integration in the electrical control. Information about the individual steps for electrical installation of the device: see "Electrical installation", page 37.

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

In the case of non-compliance, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

▶ Make sure that the following control and electrical requirements are met so that the product can fulfill its protective function.

Requirements for use

The output signals of the protective device must be analyzed by downstream controllers in such a way that the dangerous state of the machine is ended safely. Depending on the safety concept, signal evaluation is carried out e.g. with safety relays or with a safety controller.

- It must be possible to electrically influence the control of the machine.
- The electrical control of the machine must meet the requirements of IEC 60204-1.
- A restart interlock must be implemented depending on applicable national regulations or required reliability of the safety function. Because the protective device does not have an integrated restart interlock, this must be implemented in the external control, if required.
- When using a safety controller, different signal levels of both OSSDs must be
 detected depending on applicable national regulations or required reliability of the
 safety function. The maximum discrepancy time tolerated by the controller must
 be selected according to the application
- The OSSD1 and OSSD2 output signals must not be connected to each other.
- In the machine controller, the signals of both OSSDs must be processed separately.

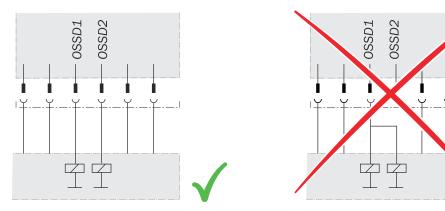


Figure 11: Dual-channel and isolated connection of OSSD1 and OSSD2

- The machine must switch to the safe state at any time if at least one of the two OSSDs switches to the OFF state
- Prevent the formation of a potential difference between the load and the protective device. If you connect loads to the OSSDs (switch outputs) that then also switch if controlled with negative voltage (e.g., electro-mechanical contactor without reverse polarity protection diode), you must connect the 0 V connections of these loads and those of the corresponding protective device individually and directly to the same 0 V terminal strip. In the event of a fault, this is the only way to ensure that there can be no potential difference between the 0 V connections of the loads and those of the corresponding protective device.

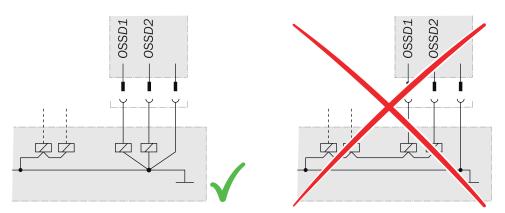


Figure 12: No potential difference between load and protective device

DANGER

Hazard due to lack of effectiveness of the protective device

In the case of non-compliance, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

Downstream contactors must be positively guided and monitored depending on applicable national regulations or required reliability of the safety function.

 Make sure that downstream contactors are monitored (external device monitoring, EDM).

NOTE

Because the protective device does not have integrated external device monitoring, this must be implemented in the external control, if required.

Requirements for the electrical control of the machine

Both outputs are short-circuit protected to 24 V DC and 0 V. When the light path is clear, the OSSDs are in the ON state. When a switch-off condition is present (e.g., interruption in the light path), the OSSDs are in the OFF state. In the event of a device fault, at least one OSSD is in the OFF state.

The protective device complies with the rules for electromagnetic compatibility (EMC) for the industrial sector (Radio Safety Class A).

Radio interference cannot be ruled out when used in residential areas.

The following requirements are met:

- The external voltage supply of the safety multibeam sensor must be capable of buffering brief power failures of 20 ms as specified in IEC 60204-1.
- The power supply unit must provide safe isolation according to IEC 61140 (SELV/PELV). Suitable power supply units are available from SICK as accessories, see "Accessories", page 59.

4.4.1 Restart interlock

Overview

The restart interlock prevents the machine from automatically starting up, for example after a protective device has responded while the machine is operating or after changing the machine's operating mode.

Depending on the regulations which apply at the place of installation, a restart interlock may be required.

The protective device does not have an internal restart interlock. You must therefore implement a restart interlock externally via the circuitry or the control if needed, e.g. in connection with the SICK RLY3-OSSD2 / RLY3-OSSD3 safety relay.

Functionality

Before the machine can be restarted, the operator must reset the restart interlock.



Figure 13: Schematic representation of operation with restart interlock

The dangerous state of the machine $(\mathbf{0})$ is brought to an end if the light path is interrupted $(\mathbf{2})$ and is not re-enabled $(\mathbf{3})$ until the operator presses the reset pushbutton located outside the hazardous area $(\mathbf{4})$. The machine can then be restarted.

Depending on applicable national regulations, a restart interlock must be available if it is possible to stand behind the protective device. Observe IEC 60204-1.

4.4.2 External device monitoring (EDM)

Overview

The external switching elements (external device monitoring, EDM) must be inspected in line with the regulations which apply at the place of installation or the required reliability of the safety function.

External device monitoring (EDM) monitors the status of downstream contactors.

Important information

NOTE

Because the protective device does not have integrated external device monitoring, this must be implemented in the external control, if required.

Prerequisites

Positively guided contactors are used for shutting down the machine.

4.4.3 Connection diagrams

Connection diagram for RLY3-OSSD2 with restart interlock and external device monitoring

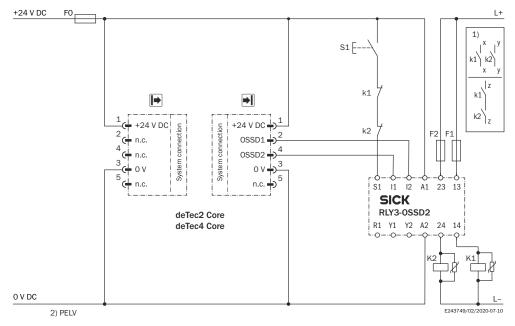


Figure 14: Connection diagram for RLY3-OSSD2 with restart interlock and external device monitoring

- 1) Output circuits: These contacts must be incorporated into the control such that the dangerous state is brought to an end if the output circuit is open. For categories 4 and 3, they must be incorporated on dual-channels (x, y paths). Type 2 devices are suitable for use up to PL c. Single-channel incorporation into the control (z path) is only possible with a single-channel control and taking the risk analysis into account.
- SELV/PELV safety extra-low voltage.

Task

 Connection of a safety multibeam sensor deTem2 Core Ex II 3GD to a RLY3-OSSD2 safety relay. Operating mode: With restart interlock and external device monitoring.

Mode of operation

• When the light path is clear, the OSSD1 and OSSD2 outputs carry voltage. The system can be switched on when K1 and K2 are in a fault-free de-energized position. The RLY3-OSSD2 is switched on by pressing S1 (pushbutton is pressed and released). The outputs (contacts 13-14 and 23-24) switch the K1 and K2 contactors on. When the light path is interrupted, the OSSD1 and OSSD2 outputs switch the RLY3-OSSD2 off. Contactors K1 and K2 are switched off.

Fault analysis

Cross-circuits and short-circuits of the OSSDs are recognized and lead to the
locking status (lock-out). A malfunction with one of the K1 or K2 contactors is
detected. The switch-off function is retained. In the event of manipulation (e.g.,
jamming) of the S1 pushbutton, the RLY3-OSSD2 will not re-enable the output
current circuits.

4.5 Testing plan

The manufacturer of the machine and the operating entity must define all required checks. The definition must be based on the application conditions and the risk assessment and must be documented in a traceable manner.

- When defining the check, please note the following:
 - Define the type and execution of the check.
 - o Define the frequency of the check.
 - Notify the machine operators of the check and instruct them accordingly.

The following checks are often defined in connection with a protective device:

- Check during commissioning and modifications
- Regular check

Check during commissioning and modifications

Before commissioning the machine and after making changes, you must check whether the safety functions are fulfilling their planned purpose and whether persons are being adequately protected.

The test is intended to ensure that the hazardous area is monitored by the protective device and any attempted access to the hazardous area is prevented.

The following points are often helpful for the definition of the check:

- Does the check have to be completed by quality safety personnel?
- Can the thorough check be completed by personnel specially qualified and authorized to do so?
- Does the check have to be documented in a traceable manner?
- Can the check be carried out according to a check list (see "Checklist for initial commissioning and commissioning", page 67)?
- Do the machine operators know the function of the protective device?
- Have the machine operators been trained to work on the machine?
- Have the machine operators been notified about modifications on the machine?
- Does the hazardous area to be secured have to be checked with a test rod, see
 "Test rod check", page 25?
- ▶ Define all guidelines for the check.

Regular check

The test is intended to ensure that the hazardous area is monitored by the protective device and any attempted access to the hazardous area is prevented.

The following points are often helpful for the definition of the check:

- Which check must be carried out and how is it carried out?
 - Test rod check, page 25
 - Visual check of the machine and the protective device, page 27
- How often does the check have to be carried out?
- Do the machine operators have to be notified of the check and do they need to be instructed accordingly?
- Define all guidelines for the check.

4.5.1 Test rod check

Overview

The light beam is covered with an opaque test rod (minimum diameter of 30 mm). When the light beam is covered, the OSSD LED on the receiver must light up red. The check is carried out for each light beam and at multiple positions between the sender and the receiver.

Important information

DANGER

Hazard due to unexpected starting of the machine

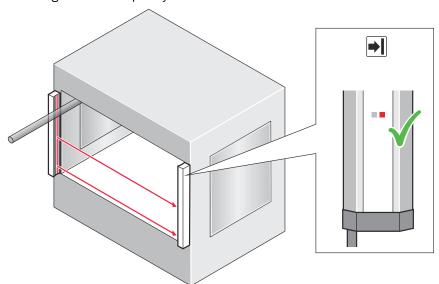
- ► Make sure that the dangerous state of the machine is and remains switched off during the check.
- ▶ Make sure that the outputs of the safety multibeam sensor do not affect the machine during the thorough check.

DANGER

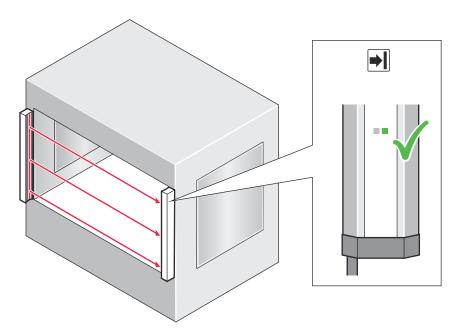
Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

Do not operate the machine if the OSSD LED lights up green during the test!


- ▶ If the OSSD LED lights up green during the test, even if only briefly, work must stop at the machine.
- ► In this case, the mounting and electrical installation of the safety multibeam sensor must be checked by appropriately qualified safety personnel.

Prerequisites


The OSSD LED lights up green.

Approach

1. Cover a light beam completely.

- ✓ The OSSD LED on the receiver lights up red.
- 2. Enable the light beam.

- The OSSD LED on the receiver lights up green.
- 3. Carry out the check for each light beam.
- Carry out the check at the following positions:
 - Immediately in front of the sender
 - In the middle, between the sender and the receiver (or between the deflector mirrors)
 - Immediately in front of the receiver
 - Directly before and after each deflector mirror (if installed)

4.5.2 Visual check of the machine and the protective device

The following points are often helpful for the definition of the check:

- Has the machine been retrofitted?
- Have machine parts been removed?
- Have modifications been made to the surroundings of the machine?
- Have the protective device or its parts been dismantled?
- Is it possible to enter the hazardous area without being detected?
- Is the protective device damaged?
- Is the protective device severely contaminated?
- Is the front screen contaminated, scratched or destroyed?
- Are there any damaged cables or open cable ends?

If one of the points applies, the machine should be shut down immediately. In this case, the machine and the protective device must be checked by appropriately qualified safety personnel.

5 **Mounting**

5.1 Safety

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

If unsuitable brackets are used or if subjected to excessive vibrations, the device may become detached or damaged.

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Only use SICK-approved brackets for mounting.
- Take appropriate measures for vibration damping if vibration and shock specifications exceed the values and test conditions specified in the data sheet.

NOTE

Mount the device in the following order.

Prerequisites

The safety multibeam sensor has been designed correctly.

Further topics

- "Design", page 15
- "Technical data", page 54

5.2 Unpacking

Approach

- Check the components for completeness and the integrity of all parts.
- In the event of complaints, contact the responsible SICK subsidiary.

Further topics

"Ordering information", page 58

5.3 Mounting

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

Persons or parts of the body to be protected may not be recognized or not recognized in time in case of non-observance.

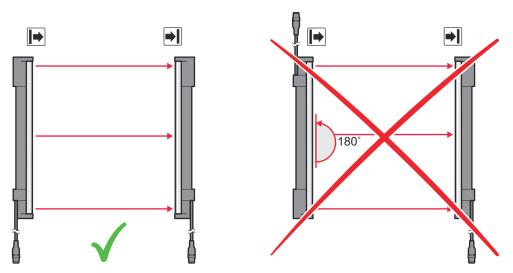
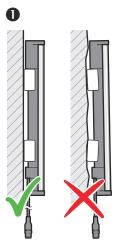
- Take into consideration the minimum distances calculated for the machine.
- Mount safety multibeam sensor such that nobody can pass under the lowest light beam, pass over the highest light beam, get between two light beams, or pass by the side of the protective device.

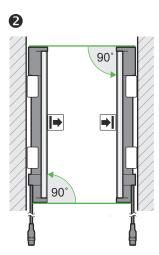
DANGER

Hazard due to lack of effectiveness of the protective device

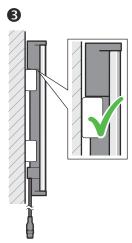
Persons and parts of the body to be protected may not be recognized in case of non-observance.

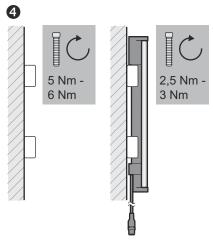
The end with the cable connection must point in the same direction for the sender and receiver.

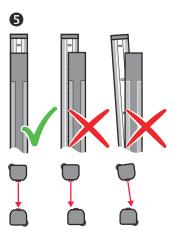



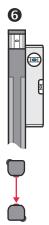

Figure 15: Sender and receiver must not be installed such that they are rotated 180° relative to each other

Notes on mounting


Mount the sender and receiver on a level surface $(\mathbf{0})$.


Mount the sender and receiver at the same height (2). For minor adjustments when aligning, the sender and receiver can be adjusted longitudinally in the brackets.


If possible, mount the top bracket at a height such that the offset in the safety multibeam sensor housing rests on the bracket. This ensures that the safety multibeam sensor will not slip down during mounting (3).


Tightening torque for the screws used to mount the bracket: 5 Nm ... 6 Nm. Tightening torque for the screws used to secure the safety multibeam sensor in the bracket: 2.5 Nm ... 3 Nm (4). Higher torques can damage the bracket, while lower torques are not secure enough to prevent the safety multibeam sensor from moving.

Make sure that the sender and receiver are aligned correctly. The optical lens systems of the sender and the receiver must be located opposite one another (5).

If necessary, use a spirit level to check that the components are parallel (6).

Further topics

- "Sender and receiver alignment", page 41
- "Minimum distance from the hazardous point", page 16
- "Minimum distance from reflective surfaces", page 18
- "Alignment with the QuickFix bracket", page 43
- "Alignment with the FlexFix bracket or with the upgrade bracket", page 44

5.3.1 Mounting the QuickFix bracket

Overview

2 QuickFix brackets are used to mount the sender and receiver.

The QuickFix bracket consists of 2 parts, which are pushed into each other. The two individual parts are connected with an M5 screw and the housing (sender or receiver) is clamped with form-fit clamping.

The two mounting surfaces for the brackets of the sender or receiver must be parallel and lie in the same plane.

Important information

NOTE

The following should be considered when mounting the QuickFix bracket:

- Select the appropriate length of the M5 screw to prevent any risk of injury from an overrun.
- When selecting the screw length, observe the wall thickness and the depth of the countersunk screw of the QuickFix bracket, see figure 27, page 59

NOTE

The QuickFix bracket has cable routing. Depending on the installation, the cable routing can make mounting easier.

Mount QuickFix bracket on a machine or profile frame

Table 3: Side and rear mounting with the QuickFix bracket

Mounting method	Description
On the side	Fasten the M5 screw to the machine or profile frame through the QuickFix bracket. A screw nut or threaded hole is required on the machine or profile frame (1).
	Fasten the M5 screw to the QuickFix bracket through the machine or profile frame. A screw nut is required for each QuickFix bracket (2).
	Fasten the M5 screw to the profile frame through the QuickFix bracket. A sliding nut is required on the profile frame (3).
On the back	Fasten the M5 screw to the machine or profile frame through the QuickFix bracket. A screw nut or threaded hole is required on the machine or profile frame (4).

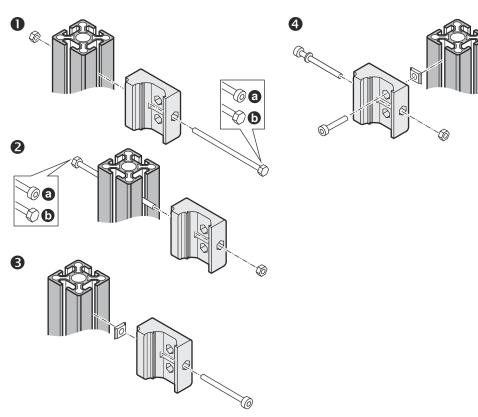


Figure 16: Mounting the QuickFix bracket to a profile

5.3.2 Mounting the FlexFix bracket

Overview

In the FlexFix bracket, the sender and receiver can be rotated ± 15° around their longitudinal axis.

2 FlexFix brackets are used to mount the sender and receiver.

As a rule, each FlexFix bracket is mounted to the flange plate with 2 screws. In exceptional cases (e.g. reduced vibration and shock requirements), a FlexFix bracket can be mounted with only one screw if this does not impair the function.

Important information

NOTICE

The housing of the safety multibeam sensor can become scratched if the screw heads protrude when the FlexFix brackets are mounted on the back.

Avoid this by taking one of the following measures:

- Use flat head screws.
- If using cylinder head screws, use two screws per bracket and no washers.

NOTE

The FlexFix mounting kit (part number 2073543) contains 2 FlexFix brackets, one alignment tool, and the required screws, sliding nuts, and washers.

Further topics

"Brackets", page 59

5.3.2.1 Mounting the FlexFix bracket on a machine or profile frame

Mounting method

Table 4: Lateral and rear mounting with the FlexFix bracket

Mounting method	Description
On the side	With the M5 screw through the FlexFix bracket on the machine or profile frame. A screw nut or threaded hole is required on the machine or profile frame (①).
	With the M5 screw through the FlexFix bracket on the profile frame. 2 sliding nuts are required on the profile frame (2).
On the back	With the M5 screw through the FlexFix bracket on the machine or profile frame. A screw nut or threaded hole is required on the machine or profile frame (3).

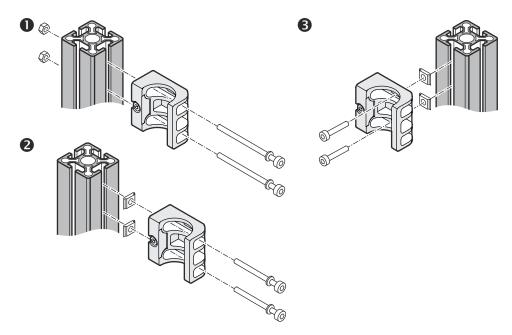


Figure 17: Mount FlexFix bracket to a profile frame

Approach

- After assembling the FlexFix brackets, screw the sender or receiver into the FlexFix brackets from the front. (1)
- 2. Align the sender and receiver. (2)
- Use an M5 screw to secure the position of the sender and receiver in the FlexFix bracket. (3)

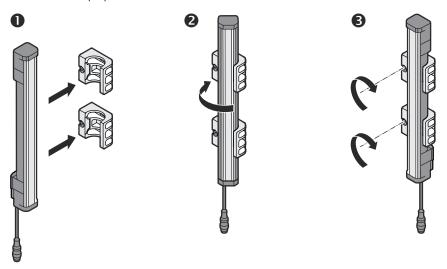


Figure 18: Inserting the safety multibeam sensor in the FlexFix brackets

NOTE

The protective device can only be screwed in when both FlexFix brackets are in align-

Recommendation:

- 1. Only hand-tighten the screws on the FlexFix brackets at first.
- Align the two FlexFix brackets. To do this, place a straightedge or spirit level, for example, on the screw mounting surfaces of the FlexFix brackets that are not being used.
- Tighten the screws. 3.

Further topics

"Sender and receiver alignment", page 41

5.3.2.2 Mounting the FlexFix bracket on the back of a device column

Overview

The FlexFix bracket can be mounted in the device column using sliding nuts.

Use washers between the FlexFix brackets and the device column if you want to mount the sender and receiver in the center of the device column.

Approach

- After assembling the FlexFix brackets, screw the sender or receiver into the FlexFix 1. brackets from the front.
- 2. Align the sender and receiver.
- Use an M5 screw to secure the position of the sender and receiver in the FlexFix bracket.

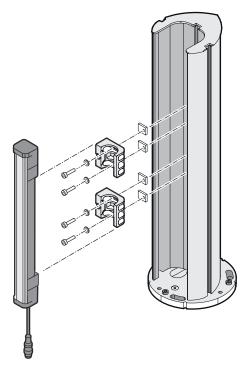


Figure 19: Mounting the FlexFix bracket on a device column (accessory)

Further topics

"Sender and receiver alignment", page 41

Mounting the replacement bracket 5.3.3

If an existing M2000 safety multibeam sensor device is mounted with a swivel-mount bracket or a side bracket, it can be replaced by a deTem2 Core Ex II 3GD safety multibeam sensor using a replacement bracket. There is no need to drill new holes, since the existing ones can be used for the replacement bracket.

Complementary information

Additional information on mounting a safety multibeam sensor using a replacement bracket can be found in the mounting instructions for the replacement bracket.

5.4 Affixing labels

Note on explosion protection

Figure 20: Notes for explosion protection

- Affix one "Notes for explosion protection" label each in a visible location in direct proximity to the sender and receiver or to the electrical connections. Note the following information:
 - Use the "Notes for explosion protection" label in the language of the machine operator. Use multiple labels if additional languages are required for other operators.
 - Affix labels such that they are highly visible for each operator during operation of the machine. The labels must not be concealed from view, even when additional objects or equipment are installed.

6 **Electrical installation**

6.1 Safety

Important information

DANGER

Hazard due to electrical voltage

Hazard due to unexpected starting of the machine

- Make sure that the machine is (and remains) disconnected from the power supply during the electrical installation.
- Make sure that the dangerous state of the machine is (and remains) switched off during electrical installation.
- Make sure that the outputs of the safety multibeam sensor do not affect the machine during electrical installation.
- Only use an appropriate voltage supply, see "Technical data", page 54.

DANGER

Risk of ignition

Failure to observe this information could result in a risk of ignition

- Always switch the voltage supply off before disconnecting a connecting cable from the device.
- Ensure that all electrical connections to the device or to the connections are protected.
- The IP enclosure rating for the connections and therefore for the device is only guaranteed if the connections are actually connected or protected. Otherwise foreign objects can enter the terminal compartment. This can cause an explosion the next time the device is switched on.
- Take appropriate technical measures to ensure the IP enclosure rating of the connecting cables when the cables are connected and disconnected.

DANGER

Hazard due to lack of effectiveness of the protective device

The dangerous state may not be stopped in the event of non-compliance.

- Always connect the two OSSDs separately. The two OSSDs must not be connected to each other.
- Connect the OSSDs such that the machine controller processes both signals separately.

DANGER

Hazard due to lack of effectiveness of the protective device

The dangerous state may not be stopped in the event of non-compliance.

Prevent the formation of a potential difference between the load and the protective device.

Prerequisites

- The safety multibeam sensor has been safely integrated into the control system and the electrical system of the machine.
- Mounting has been completed correctly.

Example: Isolated connection of OSSD1 and OSSD2

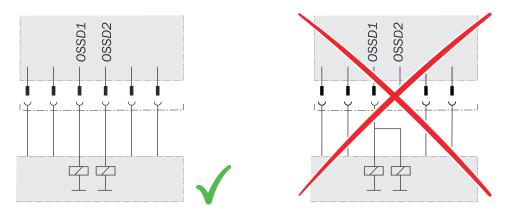


Figure 21: Dual-channel and isolated connection of OSSD1 and OSSD2

Avoiding any potential difference between load and protective device

If you connect loads to the output signal switching devices (switching outputs) that then also switch if controlled with negative voltage (e.g., electro-mechanical contactor without reverse polarity protection diode), you must connect the 0 V connections of these loads and those of the corresponding protective device separately and also directly to the same 0 V terminal strip. In the event of a fault, this is the only way to ensure that there can be no potential difference between the 0 V connections of the loads and those of the corresponding protective device.

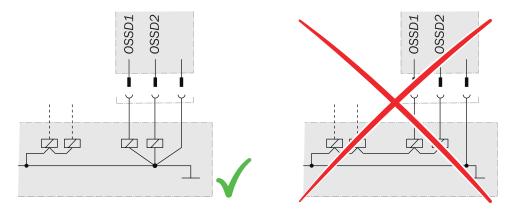


Figure 22: No potential difference between load and protective device

Further topics

"Integrating into the electrical control", page 20

6.2 System connection (M12, 5-pin)

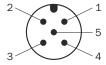


Figure 23: System connection (male connector, M12, 5-pin)

Table 5: System connection pin assignment (male connector, M12, 5-pin)

Pin	Wire color 1)	I Sender	■ Receiver
1	Brown	+24 V DC (voltage supply input)	+24 V DC (voltage supply input)
2	White	Reserved	OSSD1 (output signal switching device 1)
3	Blue	0 V DC (voltage supply input)	0 V DC (voltage supply input)
4	Black	Reserved	OSSD2 (output signal switching device 2)
5	Gray	Not connected	Not connected

¹⁾ Applies to the connecting cables recommended as accessories.

Further topics

"Integrating into the electrical control", page 20

System connection via connection cable (M12, 5-pin to 8-pin) 6.3

An optional connection cable is available to connect the 5-pin system connection to an existing 8-pin female connector. The connection cable can be used to replace an existing M2000 safety multibeam sensor with a deTem2 Core Ex II 3GD safety multibeam sensor without having to route new cables.

7 Commissioning

7.1 Safety

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

When changes are made to the machine, the effectiveness of the protective device may be affected unintentionally.

After every change to the machine and changes to the integration or operational and secondary conditions of the safety multibeam sensor, check the protective device for effectiveness and recommission as specified in this section.

WARNING

Hazard due to lack of effectiveness of the protective device

- Before commissioning the machine, make sure that the machine is first checked and released by qualified safety personnel.
- Only operate the machine with a perfectly functioning protective device.

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Make sure that the optical properties of the front screens of the sender and receiver are not changed, e.g., by:
 - Beading water, mist, frost, or ice formation. If applicable, remove films or other types of contamination, disconnect the voltage supply of the receiver and then switch it back on.
 - Scratches or damage. Replace the device whose front screen is scratched or damaged.
- Make sure that all reflective surfaces and objects maintain a minimum distance from the light beams.
- Make sure that no dispersive media (e.g., dust, fog, or smoke) are within the calculated minimum distance from the light beams.

Further topics

"Minimum distance from reflective surfaces", page 18

7.2 Overview

Prerequisites

- Mounting has been completed correctly.
- Electrical installation has been completed correctly.

Further topics

- "Project planning", page 15
- "Mounting", page 28
- "Electrical installation", page 37

7.3 Switching on

Overview

After switching on, the sender and receiver initialize. All LEDs of the sender and receiver briefly light up. After initialization, the receiver displays the alignment quality using four blue LEDs. Once the safety light curtain is aligned (OSSD LED: green), the alignment indicator switches off after a certain period of time, and only the PWR LED of the sender and the OSSD LED of the receiver continue to light up.

In the event of a fault, the red fault LED flashes on the respective device. A red fault LED in combination with the blue LEDs shows the cause of the fault on the side of the receiver.

Further topics

"Troubleshooting", page 50

7.4 Sender and receiver alignment

Overview

After mounting and electrical installation, the sender and receiver must be aligned with each other.

Important information

DANGER

Dangerous state of the machine

- Make sure that the dangerous state of the machine is (and remains) switched off during the alignment process.
- Make sure that the outputs of the safety multibeam sensor do not affect the machine during the alignment process.

Further topics

- "Alignment with the QuickFix bracket", page 43
- "Alignment with the FlexFix bracket or with the upgrade bracket", page 44
- "Indication of the alignment quality", page 45
- "Diagnostic LEDs", page 50

7.4.1 Aligning the sender and receiver

Prerequisites

- Sender and receiver have been mounted at the correct height.
- The safety multibeam sensor can rotate in the bracket. If necessary, loosen the fixing screws slightly.

Approach

- 1. Switch on voltage supply of safety multibeam sensor.
- 2. Roughly align the sender with the receiver by rotating it.
- 3. Align the receiver with the sender. To do this, rotate the receiver so that as many blue alignment quality light emitting diodes as possible light up on the receiver.
- If required, align the sender more precisely to the receiver so that as many alignment quality light emitting diodes as possible light up on the receiver.
- If required, align the receiver more precisely to the sender so that as many alignment quality light emitting diodes as possible light up on the receiver.

- When at least three (preferably four) alignment quality LEDs light up on the receiver, fasten the components in the brackets. Torque: 2.5 Nm ... 3 Nm.
- 7. Switch the voltage supply off and then on again.
- Check the alignment quality light emitting diodes to make sure that the components are still correctly aligned with each other.

NOTE

Once three blue alignment quality light emitting diodes light up, alignment is good and availability is stable.

Please note that body parts or objects between the sender and receiver (e.g., hand, tool, AR60 optional laser alignment aid) will impair the function of the alignment quality LEDs. Remove all objects from this area to allow the alignment quality to be assessed.

Complementary information

The AR60 optional laser alignment aid can be used to facilitate alignment. To ensure that the indication of the alignment quality cannot be impaired, place the AR60 optional laser alignment aid with the adapter between the light beams of the safety multibeam sensor.

Further topics

- "Indication of the alignment quality", page 45
- "Mounting", page 28
- "Accessories", page 59

7.4.2 Aligning the sender, receiver, and deflector mirror

Prerequisites

- Sender and receiver have been mounted at the correct height.
- The safety multibeam sensor can rotate in the bracket. If necessary, loosen the fixing screws slightly.

Approach

- 1. Switch on voltage supply of safety multibeam sensor.
- Place the laser alignment aid near the bottom light beam on the sender.
- Rotate the sender and adjust the height of the mirror column so that the laser beam hits the bottom mirror of the first mirror column.
 - The laser beam should hit the center of the mirror horizontally.
 - The laser beam should hit the mirror vertically with the same deviation from the center of the mirror that the laser of the laser alignment aid has from the bottom light beam.
- 4. Secure the sender in the brackets. Torque: 2.5 Nm ... 3 Nm.
 - The alignment may shift slightly when the screws are tightened. However, do not correct the setting.
- Place the laser alignment aid near the bottom light beam on the receiver.
- Rotate the receiver so that the laser beam hits the bottom mirror of the first mirror column.
 - The laser beam should hit the center of the mirror horizontally.
 - The laser beam should hit the mirror vertically with the same deviation from the center of the mirror that the laser of the laser alignment aid has from the bottom light beam.
- Rotate the bottom mirror of the first mirror column so that the laser beam hits the bottom mirror of the second mirror column. If no other mirror column is available. the laser beam must hit the bottom beam of the sender.
- Repeat the previous step for the subsequent mirror columns until the laser beam hits the sender.

- 9. Perform steps 5 to 8 for all beams from the bottom to the top.
 - Align each individual mirror separately.
 - When deflecting using mirrors, the angle of incidence is the same as the emergence angle. Rotating the mirror slightly results in a deflection that is twice as great.
 - Only part of the original ray beam is ever transmitted via deflector mirrors. The alignment tolerance is reduced with each additional deflection.
- 10. Switch the voltage supply off and then on again.
- 11. Check the alignment quality LEDs to make sure that the components are still correctly aligned with each other.

NOTE

Once three blue alignment quality light emitting diodes light up, alignment is good and availability is stable.

Please note that body parts or objects between the sender and receiver (e.g., hand, tool, AR60 optional laser alignment aid) will impair the function of the alignment quality LEDs. Remove all objects from this area to allow the alignment quality to be assessed.

NOTE

The AR60 optional laser alignment aid can be used to facilitate alignment.

To ensure that the indication of the alignment quality is not impaired, place the AR60 optional laser alignment aid with the adapter between the light beams of the safety multibeam sensor.

Further topics

"Accessories", page 59

7.4.3 Alignment with the QuickFix bracket

Prerequisites

The sender and receiver have been mounted using a QuickFix bracket

Alignment with the QuickFix bracket

The QuickFix bracket offers you the following adjustment options for aligning the sender and receiver with each other:

Shift vertically

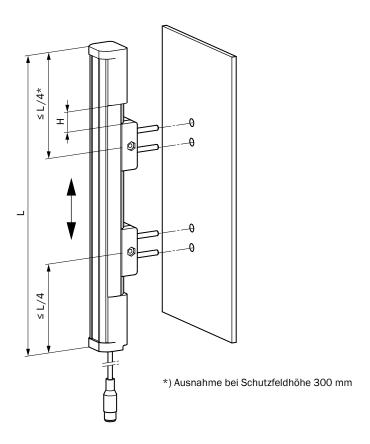


Figure 24: QuickFix bracket: Vertical adjustment

7.4.4 Alignment with the FlexFix bracket or with the upgrade bracket

Prerequisites

A FlexFix bracket or upgrade bracket has been used to mount the sender and receiver

Alignment with the FlexFix bracket or with the upgrade bracket

The FlexFix bracket and upgrade bracket offer you the following adjustment options for aligning the sender and receiver with each other:

- Shift vertically
- Rotation (± 15°)

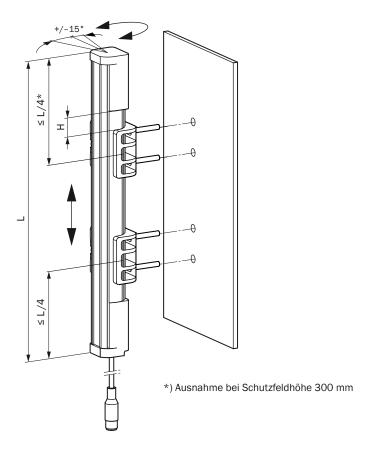


Figure 25: FlexFix bracket: Vertical adjustment / rotation

7.4.5 Indication of the alignment quality

Important information

Once three blue alignment quality light emitting diodes light up, alignment is good and availability is stable.

Please note that body parts or objects between the sender and receiver (e.g., hand, tool, AR60 optional laser alignment aid) will impair the function of the alignment quality LEDs. Remove all objects from this area to allow the alignment quality to be assessed.

Indication of the alignment quality

Table 6: Indication of the alignment quality

LEDs				Meaning	
Alignment quality light emitting diodes		OSSD			
1	2	3	4		
0	0	0	0	Red	Alignment is insufficient or a light beam is interrupted at least partially. The receiver cannot synchronize with the sender.
Blue	0	0	0	• Red	Alignment is insufficient or a light beam is interrupted at least partially.
Blue	Blue	0	0	Red	Alignment is insufficient or a light beam is interrupted at least partially.

LEDs					Meaning	
Alignment quality light emitting diodes		OSSD				
1	2	3	4			
Blue	Blue	0	0	Green	Alignment is not yet sufficient for stable availability.	
Blue	Blue	Blue	0	Green	Alignment is good, stable availability. 1)	
Blue	Blue	Blue	Blue	Green	Alignment is very good.	

O LED off. ★ LED flashes. ● LED illuminates.

7.5 **Check during commissioning and modifications**

The test is intended to ensure that the hazardous area is monitored by the protective device and any attempted access to the hazardous area is prevented.

Carry out the checks specified in the test plan of the manufacturer of the machine and the operating entity.

¹⁾ If the light path is very long, there is a possibility that all four alignment quality light emitting diodes will not light up even when alignment is excellent.

8 Operation

8.1 Safety

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Maintenance work, alignment work, fault diagnoses, and any changes to the integration of the protective device in the machine must only be carried out by qualified personnel.
- ▶ The effectiveness of the protective device must be checked following such work.

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Make sure that the optical properties of the front screens of the sender and receiver are not changed, e.g., by:
 - Beading water, mist, frost, or ice formation. If applicable, remove films or other types of contamination, disconnect the voltage supply of the receiver and then switch it back on.
 - Scratches or damage. Replace the device whose front screen is scratched or damaged.
- ► Make sure that all reflective surfaces and objects maintain a minimum distance from the light beams.
- ► Make sure that no dispersive media (e.g., dust, fog, or smoke) are within the calculated minimum distance from the light beams.

NOTE

This document does not provide instructions for operating the machine in which the safety multibeam sensor is integrated.

Further topics

"Minimum distance from reflective surfaces", page 18

8.2 Regular thorough check

The test is intended to ensure that the hazardous area is monitored by the protective device and any attempted access to the hazardous area is prevented.

► Carry out the checks specified in the test plan of the manufacturer of the machine and the operating entity.

9 **Maintenance**

9.1 Regular cleaning

Overview

Depending on the ambient conditions of the protective device, the front screens must be cleaned regularly and in the event of contamination. Static charges can cause dust particles to be attracted to the front screen.

The deflector mirrors also must be cleaned regularly and in the event of contamination.

Important information

DANGER

Risk of ignition or explosion

Static discharge could cause explosions in hazardous atmospheres.

- Always use anti-static cleaning agents to prevent static charge.
- Do not clean the device using a dry cloth.

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Regularly check the degree of contamination on all components based on the application conditions.
- Observe the information on the regular rod test check.

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Make sure that the optical properties of the front screens of the sender and receiver are not changed, e.g., by:
 - Beading water, mist, frost, or ice formation. If applicable, remove films or other types of contamination, disconnect the voltage supply of the receiver and then switch it back on.
 - Scratches or damage. Replace the device whose front screen is scratched or damaged.
- Make sure that all reflective surfaces and objects maintain a minimum distance from the light beams.
- Make sure that no dispersive media (e.g., dust, fog, or smoke) are within the calculated minimum distance from the light beams.

DANGER

Hazard due to unexpected starting of the machine

- Make sure that the dangerous state of the machine is and remains switched off during the cleaning.
- Make sure that the outputs of the safety multibeam sensor do not affect the machine during cleaning.

NOTICE

- Do not use any aggressive cleaning agents.
- Do not use any abrasive cleaning agents.
- We recommend anti-static cleaning agents.
- We recommend the use of anti-static plastic cleaner (SICK part number 5600006) and the SICK lens cloth (SICK part number 4003353).

Approach

- 1. Remove dust from the front screen using a soft, clean brush.
- 2. Then wipe the front screen with a clean, damp cloth.
- 3. Check the position of the sender and receiver.
- 4. Check the effectiveness of the protective device.

Further topics

- "Test rod check", page 25
- "Minimum distance from reflective surfaces", page 18

9.2 Regular thorough check

The test is intended to ensure that the hazardous area is monitored by the protective device and any attempted access to the hazardous area is prevented.

Carry out the checks specified in the test plan of the manufacturer of the machine and the operating entity.

10 **Troubleshooting**

10.1 Safety

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Immediately shut the machine down if the behavior of the machine cannot be clearly identified.
- Immediately put the machine out of operation if you cannot clearly identify or allocate the fault and if you cannot safely remedy the fault.
- Secure the machine so that it cannot switch on unintentionally.

DANGER

Hazard due to unexpected starting of the machine

When any work is taking place, use the protective device to secure the machine or to ensure that the machine is not switched on unintentionally.

NOTE

Additional information on troubleshooting can be found at the responsible SICK subsidiary.

10.2 **Diagnostic LEDs**

10.2.1 **Fault indicators**

Overview

In the event of a fault, the type of fault is indicated by the light emitting diode display on the sender or receiver.

Sender

Position of LEDs: see "Sender indicators", page 12

Table 7: Fault indicator on the sender

PWR-LED	ERR-LED	Possible cause	Rectification
0	0	No supply voltage or supply voltage is too low or internal fault	Check the voltage supply, see "Technical data", page 54. Switch the voltage supply off and then on again. If the fault persists, replace the sender, see "Ordering information", page 58.
0	 Red	The voltage was too high when operating the sender.	Check the voltage supply, see "Technical data", page 54. Replace the sender, see "Ordering information", page 58.

PWR-LED	ERR-LED	Possible cause	Rectification
Yellow	 Red	Fault in the supply voltage	Check the voltage supply and the power supply unit, see "Technical data", page 54. Switch the voltage supply off and then on again. If the fault persists, replace the defective components, see "Ordering information", page 58.
Yellow	 Red	The sender identified an internal fault.	Switch the voltage supply off and then on again. If the fault persists, replace the sender, see "Ordering information", page 58.

O LED off. $\overleftarrow{\ \ }$ LED flashes. \bullet LED illuminates.

Receiver

Position of LEDs: see "Receiver indicators", page 13

Table 8: Fault indicator on the receiver

OSSD LED	OSSD LED ERR-LED		quality LEDs			Possible cause	Rectification
		1	2	3	4		
Red	* Red	** Blue	0	0	0	An internal fault has occurred.	Switch the voltage supply off and then on again. If the fault persists, replace the receiver, see "Ordering information", page 58.
• Red	* Red	0	≫ Blue	0	0	Fault in the supply voltage	Check the voltage supply and the power supply unit, see "Technical data", page 54. Switch the voltage supply off and then on again. If the fault persists, replace the defective components, see "Ordering information", page 58.
• Red	☀ Red	O	0	☀ Blue	0	The receiver has recognized beams from several senders.	Check the distance to senders of the same type. Make sure that beams from another sender cannot hit the receiver, see "Protection against interference from systems in close proximity to each other", page 20. Switch the voltage supply off and then on again.

OSSD LED	ERR-LED	Alignment of	quality LEDs		Possible cause	Rectification	
		1	2	3	4		
• Red	☀ Red	0	0	0	** Blue	A fault or unexpected status was identified on the OSSDs of the system connection (e.g., overvoltage, short-circuit to HIGH or short-circuit to LOW, cross-circuit, permissible load capacity exceeded)	Check the system wiring for a fault. Make sure that the OSSDs have been wired correctly, see "Integrating into the electrical control", page 20. Switch the voltage supply off and then on again. If the fault persists, replace the defective components, see "Ordering information", page 58.

O LED off. : LED flashes. ● LED illuminates.

11 **Decommissioning**

11.1 Disposal

Approach

Always dispose of unusable devices in accordance with national waste disposal regulations.

Complementary information

SICK will be glad to help you dispose of these devices on request.

Technical data 12

12.1 **Data sheet**

General system data

Table 9: General system data

lable 9: General system data		I -		
	Minimum	Typical	Maximum	
Dimension of the light path 1)				
Device with a short scanning range	1			
	0.5 m 15 m	0.5 m 17 m		
Device with a long scanning range				
	10 m 70 m	10 m 90 m		
Number of beams, depending on type	2, 3, or 4			
Beam separation, depending on type	500 mm, 400 mm	, or 300 mm		
Protection class 2)	III (IEC 61140)			
Enclosure rating	IP 65 (IEC 60529) IP 67 (IEC 60529)	3)		
Supply voltage V _S ^{4) 5) 6)}	19.2 V DC	+24 V DC	28.8 V DC	
Residual ripple 7)			± 10 %	
Response time	20 ms			
Synchronization	Optical			
Туре	Type 2 (IEC 61496-1)			
Safety integrity level 8)	SIL1 (IEC 61508)			
SIL claim limit 8)	SILCL1 (IEC 62061	L)		
Category	Category 2 (ISO 13	8849-1)		
Performance level 8)	PL c (ISO 13849-1)		
PFHd (mean probability of one dangerous failure per hour)	3.0 × 10 ⁻⁹			
Equipment group/category	© II 3G,			
Labeling according to IEC/EN 60079-0, IEC/EN 60079-7, IEC/EN 60079-28 for 3G and IEC/EN 60079-0, IEC/EN 60079-31 for 3D	 			
Specific operating conditions	X 9)			
Intended areas of use	Zone 2, Zone 22			
T _M (mission time)	20 years (ISO 138	49-1)		
Safe status when a fault occurs	At least one OSSD is in the OFF state.			
Power-up delay of sender and receiver after supply voltage is applied			2 s	
Test rod speed at which the test rod is reliably detected ¹⁰⁾	0 m/s 1.6 m/s			

 $^{^{1)}}$ If the light path is very long, there is a possibility that all four alignment quality light emitting diodes will not light up even when alignment is good.

²⁾ SELV/PELV safety extra-low voltage.

³⁾ IP*7 is not approved for explosion-hazardous areas.

- The external voltage supply must be capable of bridging a brief power failure of 20 ms as specified in IEC 60204-1. Suitable power supply units are available as accessories from SICK.
- A fuse rated maximum 4 A shall be installed in the 24 V DC power supply circuit to the device in order to limit the available current.
- 6) The nominal voltage in explosion-hazardous areas is 24 V DC.
- $^{7)}$ Within the limits of U_V .
- 8) For more detailed information on the exact configuration of your machine, please contact your relevant SICK subsidiary.
- The symbol "X" refers to the following points: reduced impact resistance of transparent parts, avoidance of static charge, avoidance of UV radiation, temperature range.
- 10) Direction of movement and axis of the test rod perpendicular to the light beam.

Technical data for sender

Table 10: Technical data for sender

	Minimum	Typical	Maximum
Wavelength of sender	Near-infrared (NIR), invisible		
Effective aperture angle (EAA) 1)			5°
Current consumption			50 mA
Power consumption			1.44 W

Distance between sender and receiver D ≥ 3 m.

Technical data for receiver

Table 11: Technical data for receiver

	Minimum	Typical	Maximum		
Current consumption			150 mA		
Power consumption			4.32 W		
Output signal switching devices (OSSI	Ds)				
Type of output	2 PNP semiconduction of circuit monitored	ctors, short-circuit p	rotected 1), cross-		
Duration of OFF state	100 ms				
Switch-on delay		3 × response time			
Output voltage for ON state (HIGH) 2)	(U _V - 2.25 V) U _V				
Output voltage for OFF state (LOW) 2)	0 V 2.0 V				
Output current for ON state (HIGH)			300 mA each		
Leakage current of the OSSDs			2 mA each		
Load capacity			2.2 µF		
Load inductance			2.2 H		
Test pulse data 4)					
Test pulse width		150 µs	300 µs		
Test pulse rate	3 s-1	5 s ⁻¹	10 s ⁻¹		
Permissible cable resistance					
Between device and load 5)			2.5 Ω		

	Minimum	Typical	Maximum
Supply cable ⁶⁾			1 Ω

- $^{1)}\,\,$ Applies to the voltage range between -30 V and +30 V.
- 2) According to IEC 61131-2.
- 3) The specified values are the switching voltage passed to the device. If higher voltages are impressed from the outside, the maximum value of 2.0 V can be exceeded.
- When active, the outputs are tested cyclically (brief LOW). When selecting the downstream controllers, make sure that the test pulses do not result in deactivation when using the above parameters.
- The cable resistance of the individual wires to the downstream controller must not exceed this value, to ensure that a cross-circuit between the outputs is safely detected. (Observe standard IEC 60204-1 too.)
- The supply cable must not be used to connect other loads with the exception of the sender.

Operating data

Table 12: Operating data

System connection 1)	Male connector, M12, 5-pi	in		
Length of cable ²⁾		50 m		
E.g., wire cross-section 0.34 mm², copper cable		15 m		
E.g., wire cross-section 0.5 mm², copper cable		30 m		
Ambient operating temperature 3)	0 °C +55 °C			
Air humidity (non-condensing)	15 % 95 %			
Storage temperature	-30 °C +70 °C			
Housing cross-section	38.7 mm × 45.6 mm, plus bracket, see "Dimensional drawings", page 57			
Weight	Dependent on the number of beams, see "Table of weights", page 56			
Vibration resistance 4)	5 150 Hz, 3,5 mm / 1 g (EN 60068-2-6)			
Shock resistance 5)	15 g / 6 ms (EN 60068-2-27)			
Class	3M4 (IEC TR 60721-4-3)			

- 1) The connecting cables used must be suitable for the specific explosion-hazardous area.
- 2) Maximum permissible conductor resistances must be observed.
- The temperature difference between sender and receiver must not exceed 25 K.
- Test conditions per axis: 1 octave/minute, 20 sweeps.
- Test conditions per axis: 200 shocks.

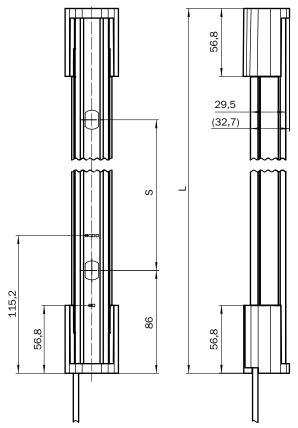

12.2 Table of weights

Table 13: Weight of sender and receiver

Number of beams	Weight in g 1)	
	■ Sender	■ Receiver
2	560	560
3	800	800
4	880	880

1) Tolerance: ± 50 g

Dimensional drawings 12.3

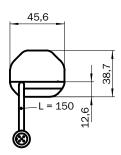


Figure 26: Dimensional drawing of sender and receiver Dimensions in mm.

Table 14: Dimensions based on the number of beams, sender and receiver

Number of beams	Beam separation, dimension S in mm	Length (L)
2	500	672
3	400	972
4	300	1072

13 **Ordering information**

13.1 Scope of delivery

Items supplied, sender

Sender

Items supplied, receiver

- Receiver
- "Notes for explosion protection" label(s)
- Safety note
- Mounting instructions
- Operating instructions for download: www.sick.com

Ordering information 13.2

Table 15: Ordering information, deTem2 Core Ex II 3GD small scanning range

Number of	■ Sender		■ Receiver	
beams	Part number Type code		Part number	Type code
2	1093813	M2C-SX0250LA10	1093899	M2C-EX02500A10
3	1093900	M2C-SX0340LA10	1093903	M2C-EX03400A10
4	1093904	M2C-SX0430LA10	1093909	M2C-EX04300A10

Table 16: Ordering information, deTem2 Core Ex II 3GD large scanning range

Number of	■ Sender		■ Receiver	
Part number Type code		Type code	Part number	Type code
2	1093898	M2C-SX0250HA10	1093899	M2C-EX02500A10
3	1093902	M2C-SX0340HA10	1093903	M2C-EX03400A10
4	1093906	M2C-SX0430HA10	1093909	M2C-EX04300A10

14 Accessories

14.1 **Brackets**

Table 17: Brackets ordering information

Part	Type code	Part number
QuickFix bracket (2x)	BEF-3SHABPKU2	2066048
QuickFix bracket (4x)	BEF-3SHABPKU4	2098710
FlexFix bracket (2x)	BEF-1SHABPKU2	2098709
FlexFix bracket (4x)	BEF-1SHABPKU4	2066614
FlexFix mounting kit (2x FlexFix brackets, alignment tool, and assembly materials for installation in device columns)	BEF-1SHABBKU2	2073543
Replacement bracket (kit with 4 brackets, mounting kit for replacement of swivel mount brackets 2030510 or side bracket 2019506 with the FlexFix bracket when using the wells provided)	BEF-1SHABU004	2099282

QuickFix bracket



Figure 27: Dimensional drawing of the QuickFix bracket

FlexFix bracket

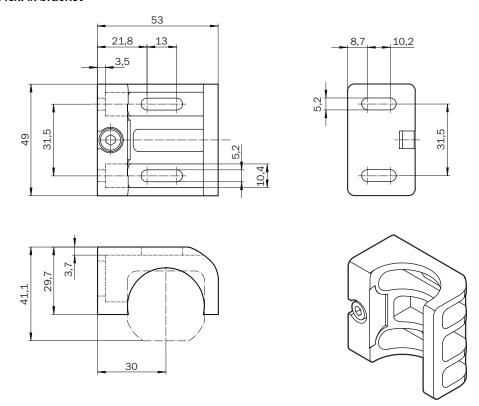


Figure 28: Dimensional drawing of the FlexFix bracket

14.2 **Mounting accessories**

Table 18: Mounting accessories ordering information

Part	Part number	
Alignment tool	4084133	

Connectivity 14.3

Table 19: Ordering information for M12 connecting cable, 5-pin (0.34 mm²) 1)

Part	Type code	Part number
Female connector, straight, 2 m cable, flying leads	YF2A15-020UB5XLEAX	2095617
Female connector, straight, 5 m cable, flying leads	YF2A15-050UB5XLEAX	2095618
Female connector, straight, 10 m cable, flying leads	YF2A15-100UB5XLEAX	2095619
Female connector, straight, 15 m cable, flying leads	YF2A15-150UB5XLEAX	2095620
Female connector, straight, 20 m cable, flying leads	YF2A15-200UB5XLEAX	2095614
Female connector, straight, 30 m cable, flying leads	YF2A15-300UB5XLEAX	2095621
Female connector, angled, 2 m cable, flying leads	YG2A15-020UB5XLEAX	2095772

Ambient operating temperature: Down to −30° C with fixed installation. 1)

Part	Type code	Part number
Female connector, angled, 5 m cable, flying leads	YG2A15-050UB5XLEAX	2095773
Female connector, angled, 10 m cable, flying leads	YG2A15-100UB5XLEAX	2095774

Table 20: Ordering information for M12 connection cable, 5-pin (0.34 mm²) 2)

Part	Type code	Part number
Female connector, straight, 0.6 m cable, male connector, straight	YF2A15-C60UB5M2A15	2096006
Female connector, straight, 1 m cable, male connector, straight	YF2A15-010UB5M2A15	2096007
Female connector, straight, 2 m cable, male connector, straight	YF2A15-020UB5M2A15	2096009
Female connector, straight, 5 m cable, male connector, straight	YF2A15-050UB5M2A15	2096010
Female connector, straight, 10 m cable, male connector, straight	YF2A15-100UB5M2A15	2096011
Female connector, straight, 15 m cable, male connector, straight	YF2A15-150UB5M2A15	2096171

The following accessories can only be used outside the explosion-hazardous area

Table 21: Ordering information, connection cable (replacement of existing devices) 3)

Part	Type code	Part number
Connection cable, M12, 5-pin to M12, 8-pin	DSL-1285GM25034KM1	2070987
Connection cable, M12, 5-pin to M26, 7-pin	DSL-6187GM25034KM1	2070988
Connection cable, M12, 5-pin to M26, 12-pin	DSL-6182GM25034KM1	2070989

Table 22: Distributor ordering information

Part	Type code	Part number
T distributor, 5-pin	DSC-1205T000025KM0	6030664

Table 23: Ordering information for power supply

Part	Type code	Part number
Output 24 V DC, 50 W (2.1 A), voltage supply NEC Class 2, SELV, PELV, input 120 V AC 240 V AC	PS50WE24V	7028789
Output 24 V DC, 95 W (3.9 A), voltage supply NEC Class 2, SELV, PELV, input 100 V AC 120 V / 220 V AC 240 V AC	PS95WE24V	7028790

14.4 Alignment aid

The following accessories can only be used outside the explosion-hazardous area

Table 24: Alignment aid ordering information

Part	Part number
AR60 laser alignment aid	1015741
Adapter	4070854

²⁾ Ambient operating temperature: Down to $-30\,^{\circ}$ C with fixed installation.

³⁾ Ambient operating temperature: Down to -30 °C with fixed installation

14.5 **Deflector mirrors**

14.5.1 **Function and use**

Overview

Deflector mirrors can be used to shape the light path to secure hazardous points from multiple sides using a single safety multibeam sensor.

Important information

DANGER

Hazard due to lack of effectiveness of the protective device

Persons and parts of the body to be protected may not be recognized in case of non-observance.

- Only mount deflector mirrors to solid walls or machine components. The position of the deflector mirrors must not change after alignment.
- Do not use deflector mirrors if contamination, beading water, condensation, or frost on the deflector mirrors is to be expected.
- Make sure that the deflector mirrors are intact and free of scratches, contamination, beading water, condensation, frost, etc. at all times.

Further topics

"Mirror columns", page 63

14.5.2 Change in scanning range using deflector mirrors

NOTE

The use of deflector mirrors reduces the sensing range depending on the number of deflector mirrors in the light path.

Table 25: Scanning range with and without 1, 2, or 3 deflector mirrors

Variant	Scanning range	Scanning range with 1 deflector mirror	Scanning range with 2 deflector mirrors	Scanning range with 3 deflector mirrors
Short scanning range	15 m	13.5 m	12.2 m	11.1 m
Long scanning range	70 m	63 m	57 m	51.8 m

14.5.3 Deflector mirror - ordering information

Table 26: Ordering information, deflector mirror

Part	Type code	Part number
Deflector mirror incl. mounting kit	PNS75-008	1026647

14.5.4 Deflector mirror PNS75 - ordering information

Table 27: Ordering information for PNS75 deflector mirror

Mirror length in mm	Suitable for beam separation	Type code	Part number
640	600	PNS75-064	1019416
940	900	PNS75-094	1019418
1240	1200	PNS75-124	1019420

Mirror length in mm	Suitable for beam separation	Type code	Part number
1540	1500	PNS75-154	1019422

14.5.5 Deflector mirror PNS125 - ordering information

Table 28: Ordering information for PNS125 deflector mirror

Mirror length in mm	Suitable for beam separation	Type code	Part number
640	600	PNS125-064	1019427
940	900	PNS125-094	1019429
1240	1200	PNS125-124	1019431
1540	1500	PNS125-154	1019433

14.6 Mirror columns

Table 29: Ordering information, mirror columns

Column height	Suitable for number of beams	Suitable for beam separation	Type code	Part number
985 mm	2	500 mm	PM3S96-00240020	1040619
1,185 mm	3	400 mm	PM3S11-00330030	1040625
1,285 mm	4	300 mm	PM3S13-00430040	1040626

Complementary information

Observe the information on deflector mirrors, particularly on changing the scanning range.

Further topics

"Deflector mirrors", page 62

14.7 **Device columns**

Table 30: Ordering information for device columns

Column height	Max. installation length	Type code	Part number
985 mm	965 mm	PU3H96-00000000	2045490
1185 mm	1165 mm	PU3H11-00000000	2045641
1285 mm	1265 mm	PU3H13-00000000	2045642
1570 mm	1550 mm	PU3H15-00000000	2068813
1740 mm	1720 mm	PU3H17-00000000	2045643
2040 mm	2020 mm	PU3H21-00000000	2045644
2270 mm	2250 mm	PU3H22-00000000	2045645
2420 mm	2400 mm	PU3H24-00000000	2045646

14.8 Accessories for mirror columns and device columns

Table 31: Ordering information, accessories for mirror columns and device columns

Part	Part number
Compensating plate, suitable for mirror columns and device columns	4031053

Part	Part number
Steel dowel for fixing the compensating plate to the floor	5308961

Cleaning agent 14.9

Table 32: Cleaning agent ordering information

Part	Part number
Anti-static plastic cleaner	5600006
Lens cloth	4003353

Test rods 14.10

Table 33: Ordering information, test rods

Part	Part number
Test rod 30 mm	2022602
Test rod holder	2052249

15 **Annex**

15.1 **Conformities and certificates**

You can obtain declarations of conformity, certificates, and the current operating instructions for the product at www.sick.com. To do so, enter the product part number in the search field (part number: see the entry in the "P/N" or "Ident. no." field on the type label).

15.1.1 EU declaration of conformity

Excerpt

The undersigned, representing the manufacturer, herewith declares that the product is in conformity with the provisions of the following EU directive(s) (including all applicable amendments), and that the standards and/or technical specifications stated in the EU declaration of conformity have been used as a basis for this.

- ROHS DIRECTIVE 2011/65/EU
- EMC DIRECTIVE 2014/30/EU
- MACHINERY DIRECTIVE 2006/42/EC
- ATEX DIRECTIVE 2014/34/EU

15.1.2 **UK** declaration of conformity

Excerpt

The undersigned, representing the following manufacturer herewith declares that this declaration of conformity is issued under the sole responsibility of the manufacturer. The product of this declaration is in conformity with the provisions of the following relevant UK Statutory Instruments (including all applicable amendments), and the respective standards and/or technical specifications have been used as a basis.

- Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012
- Electromagnetic Compatibility Regulations 2016
- Supply of Machinery (Safety) Regulations 2008
- Equipment and Protective Systems Intended for use in Potentially Explosive Atmospheres Regulations 2016

15.2 Note on standards

Standards are specified in the information provided by SICK. The table shows regional standards with similar or identical contents. Not every standard applies to all products.

Table 34: Note on standards

Standard	Standard (regional)
	China
IEC 60068-2-6	GB/T 2423.10
IEC 60068-2-27	GB/T 2423.5
IEC 60204-1	GB/T 5226.1
IEC 60529	GB/T 4208
IEC 60825-1	GB 7247.1
IEC 61131-2	GB/T 15969.2
IEC 61140	GB/T 17045
IEC 61496-1	GB/T 19436.1
IEC 61496-2	GB/T 19436.2

Standard	Standard (regional)	
	China	
IEC 61496-3	GB 19436.3	
IEC 61508	GB/T 20438	
IEC 62061	GB 28526	
ISO 13849-1	GB/T 16855.1	
ISO 13855	GB/T 19876	

15.3 Checklist for initial commissioning and commissioning

Checklist for manufacturers or installers for installing electro-sensitive protective device (ESPE)

The details relating to the items listed below must be available no later than when the system is commissioned for the first time. However, these depend on the specific application (the requirements of which must be reviewed by the manufacturer or installer).

This checklist should be retained and kept with the machine documentation to serve as reference during recurring tests.

This checklist does not replace the initial commissioning, nor the regular inspection by qualified safety personnel.

Have the safety rules and regulations been observed in compliance with the directives and standards applicable to the machine?	Yes □ No □
Are the applied directives and standards listed in the declaration of conformity?	Yes ☐ No ☐
Does the protective device comply with the required PL/SIL claim limit and PFHd in accordance with EN ISO 13849-1/EN 62061 and the required type in accordance with EN 61496-1?	Yes □ No □
Is access to the hazardous area or hazardous point only possible through the protective field of the ESPE?	Yes □ No □
Have appropriate measures been taken to protect (mechanical protection) or monitor (protective devices) any persons or objects in the hazardous area when protecting a hazardous area or hazardous point, and have these devices been secured or locked to prevent their removal?	Yes □ No □
Are additional mechanical protective measures fitted and secured against manipulation which prevent reaching below, above or around the ESPE?	Yes ☐ No ☐
Has the maximum shutdown and/or stopping time of the machine been measured, specified and documented (at the machine and/or in the machine documentation)?	Yes □ No □
Has the ESPE been mounted such that the required minimum distance from the nearest hazardous point has been achieved?	Yes □ No □
Are the ESPE devices properly mounted and secured against manipulation after adjustment?	Yes □ No □
Are the required protective measures against electric shock in effect (protection class)?	Yes □ No □
Is the control switch for resetting the protective devices (ESPE) or restarting the machine present and correctly installed?	Yes □ No □
Are the outputs of the ESPE (OSSDs or safety outputs via the network) integrated according to the required PL/SILCL in accordance with EN ISO 13849-1/EN 62061 and does the integration correspond to the circuit diagrams?	Yes □ No □
Has the protective function been checked in compliance with the test notes of this documentation?	Yes □ No □
Are the specified protective functions effective at every operating mode that can be set?	Yes □ No □
Are the switching elements activated by the ESPE, e.g. contactors, valves, monitored?	Yes □ No □
Is the ESPE effective over the entire period of the dangerous state?	Yes ☐ No ☐
Once initiated, will a dangerous state be stopped when switching the ESPE on or off and when changing the operating mode, or when switching to another protective device?	Yes □ No □

List of figures **16**

1.	Sender and receiver	11
2.	Sender indicators	12
3.	Receiver indicators	13
4.	Single-sided access protection	14
5.	Multi-sided access protection	14
3.	Minimum distance from the hazardous point	18
7.	Minimum distance from reflective surfaces	19
3.	Graph, minimum distance from reflective surfaces	19
9.	Preventing mutual interference from system ① and system ②	20
10.	Trouble-free operation due to reversed direction of transmission of system ①	
	system 2	20
11.	Dual-channel and isolated connection of OSSD1 and OSSD2	21
12.	No potential difference between load and protective device	22
13.	Schematic representation of operation with restart interlock	23
14.	Connection diagram for RLY3-OSSD2 with restart interlock and external device	е
	monitoring	24
15.	Sender and receiver must not be installed such that they are rotated 180° re	lative
	to each other	
16.	Mounting the QuickFix bracket to a profile	
17.	Mount FlexFix bracket to a profile frame	
18.	Inserting the safety multibeam sensor in the FlexFix brackets	
19.	Mounting the FlexFix bracket on a device column (accessory)	35
20.	Notes for explosion protection	
21.	Dual-channel and isolated connection of OSSD1 and OSSD2	
22.	No potential difference between load and protective device	
23.	System connection (male connector, M12, 5-pin)	
24.	QuickFix bracket: Vertical adjustment	
25.	FlexFix bracket: Vertical adjustment / rotation	
26.	Dimensional drawing of sender and receiver	
27.	Dimensional drawing of the QuickFix bracket	
28.	Dimensional drawing of the FlexFix bracket	60

17 List of tables

1.	Target groups and selected chapters of these operating instructions	6
2.	Formula for calculating the minimum distance from reflective surfaces	19
3.	Side and rear mounting with the QuickFix bracket	32
4.	Lateral and rear mounting with the FlexFix bracket	33
5.	System connection pin assignment (male connector, M12, 5-pin)	39
3.	Indication of the alignment quality	45
7.	Fault indicator on the sender	50
3.	Fault indicator on the receiver	51
9.	General system data	. 54
10.	Technical data for sender	55
11.	Technical data for receiver	55
12.	Operating data	
13.	Weight of sender and receiver	
14.	Dimensions based on the number of beams, sender and receiver	57
15.	Ordering information, deTem2 Core Ex II 3GD small scanning range	58
16.	Ordering information, deTem2 Core Ex II 3GD large scanning range	58
17.	Brackets ordering information	59
18.	Mounting accessories ordering information	
19.	Ordering information for M12 connecting cable, 5-pin (0.34 mm ²)	
20.	Ordering information for M12 connection cable, 5-pin (0.34 mm ²)	
21.	Ordering information, connection cable (replacement of existing devices)	
22.	Distributor ordering information	
23.	Ordering information for power supply	
24.	Alignment aid ordering information	
25.	Scanning range with and without 1, 2, or 3 deflector mirrors	
26.	Ordering information, deflector mirror	
27.	Ordering information for PNS75 deflector mirror	
28.	Ordering information for PNS125 deflector mirror	
29.	Ordering information, mirror columns	
30.	Ordering information for device columns	
31.	Ordering information, accessories for mirror columns and device columns	
32.	Cleaning agent ordering information	
33.	Ordering information, test rods	64
24	Note on standards	65

Australia

Phone +61 (3) 9457 0600 1800 33 48 02 - tollfree

E-Mail sales@sick.com.au

Austria

Phone +43 (0) 2236 62288-0 E-Mail office@sick.at

Belgium/Luxembourg Phone +32 (0) 2 466 55 66

E-Mail info@sick.be

Brazil

Phone +55 11 3215-4900 E-Mail comercial@sick.com.br

Canada

Phone +1 905.771.1444 E-Mail cs.canada@sick.com

Czech Republic

Phone +420 234 719 500 E-Mail sick@sick.cz

Chile

Phone +56 (2) 2274 7430 E-Mail chile@sick.com

China

Phone +86 20 2882 3600 E-Mail info.china@sick.net.cn

)enmark

Phone +45 45 82 64 00 E-Mail sick@sick.dk

Finland

Phone +358-9-25 15 800 E-Mail sick@sick.fi

France

Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Germany

Phone +49 (0) 2 11 53 010 E-Mail info@sick.de

Greece

Phone +30 210 6825100 E-Mail office@sick.com.gr

Hong Kong

Phone +852 2153 6300 E-Mail ghk@sick.com.hk Hungary

Phone +36 1 371 2680 E-Mail ertekesites@sick.hu

India

Phone +91-22-6119 8900 E-Mail info@sick-india.com

Israel

Phone +972 97110 11 E-Mail info@sick-sensors.com

Italy

Phone +39 02 27 43 41 F-Mail info@sick it

Japan

Phone +81 3 5309 2112 E-Mail support@sick.jp

Malaysia

Phone +603-8080 7425 E-Mail enquiry.my@sick.com

Mexico

Phone +52 (472) 748 9451 E-Mail mexico@sick.com

Netherlands

Phone +31 (0) 30 229 25 44 E-Mail info@sick.nl

New Zealand

Phone +64 9 415 0459 0800 222 278 - tollfree E-Mail sales@sick.co.nz

Norway

Phone +47 67 81 50 00 E-Mail sick@sick.no

Poland

Phone +48 22 539 41 00 E-Mail info@sick.pl

Romania

Phone +40 356-17 11 20 E-Mail office@sick.ro

Russia

Phone +7 495 283 09 90 E-Mail info@sick.ru

Singapore

Phone +65 6744 3732 E-Mail sales.gsg@sick.com Slovakia

Phone +421 482 901 201 E-Mail mail@sick-sk.sk

Sloveni

Phone +386 591 78849 E-Mail office@sick.si

South Africa

Phone +27 10 060 0550 E-Mail info@sickautomation.co.za

South Korea

Phone +82 2 786 6321/4 E-Mail infokorea@sick.com

Spain

Phone +34 93 480 31 00 E-Mail info@sick.es

Sweden

Phone +46 10 110 10 00 E-Mail info@sick.se

Switzerland

Phone +41 41 619 29 39 E-Mail contact@sick.ch

Taiwan

Phone +886-2-2375-6288 E-Mail sales@sick.com.tw

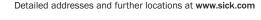
Thailand

Phone +66 2 645 0009 E-Mail marcom.th@sick.com

Turkey

Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr **United Arab Emirates** Phone +971 (0) 4 88 65 878

E-Mail contact@sick.ae
United Kingdom


Phone +44 (0)17278 31121 E-Mail info@sick.co.uk

USA

Phone +1 800.325.7425 E-Mail info@sick.com

Vietnam

Phone +65 6744 3732 E-Mail sales.gsg@sick.com

