REFERENCE MANUAL

Inspector PI50

Vision Sensor

WARNING

VSPP-5F2113 (Inspector PI50), VSPP-5F2134 (Inspector PI50 ECAT)

The Inspector is equipped with a LED illumination that must be considered as a lamp system of Risk Group 1 (low risk) according to IEC 62471:2006

WARNING: OPTICAL RADIATION DO NOT STARE INTO BEAM RISK GROUP 1 (LOW RISK) according to IEC 62471:2006 Visible LED light λ = 400-800 nm

VSPP-5F2413 (Inspector PI50-IR)

The Inspector is equipped with an LED illumination that must be considered as a lamp system of Risk Group 0 / Free Group (exempt risk) according to IEC 62471:2006

NOTICE: IR EMITTED FROM THIS PRODUCT RISK GROUP 0 (EXEMPT RISK) according to IEC 62471:2006 IR LED light λ = 850 nm

DISCLAIMER

SICK uses standard IP technology for its products, e.g. IO Link, industrial PCs. The focus here is on providing availability of products and services. SICK always assumes that the integrity and confidentiality of data and rights involved in the use of the above-mentioned products are ensured by customers themselves. In all cases, the appropriate security measures, e.g. network separation, firewalls, antivirus protection, patch management, etc., are always implemented by customers themselves, according to the situation. Reference Manual Inspector PI-series

Table of Contents

		-
1.	Introduction	/
	1. Introduction	8
	1.1. Interfaces Overview	8
~	1.2. Intended Readers	8
2.	Interfaces	9
	2. I/O Extension Box	10
	2.1. Physical Network Connection	10
	2.2. Configuration of the IP Address on the I/O Extension Box	10
	2.2.1. Basic Configuration of the IP address	11
	2.3. Setup of the I/O Extension Box in the SOPAS Single Device Applica-	4.4
		11
	2.3.1. Enabling the I/O Extension Box	12
	2.4. Input and Output Connections	12
	2.4.1. Special Conditions During Startup	13
	2.4.2. Connection to the I/O Extension Box lost During Operation	13
	2.4.3. Object Selection with I/O Extension Box	13
	2.4.4. Timing issues	13
	2.4.5. Ose of the Digital Outputs for Logic	13 12
	2.4.0. Change of Modules in the I/O Extension Box	13 12
	2.5. Iroubleshooling	13 12
	2.5.1. The I/O LED Fidshes 10 Times	13 12
	2.5.2. No condict with the I/O Extension Box	13
	2.5.5. Fight Number of Onanswered Requests to the 1/O Extension	11
	DUX	14 15
	3. Web Interlate	15
		15
	3.2. del results vid web AFI	10 15
	3.2.1. Live Illiage	15
	3.2.2. Loggeu IIIIages	16
		10 16
	2.2.2. Command Syntax	16
	2.3.2. Current Pafarance Object	10 17
	3.3.4. Select Reference Object in Run mode	17 17
	3.3.5. Backup and Restore Configuration	17 17
	3.1. Handle the Web ADI	17 18
	4 Ethernet Raw	10 19
	4.1 Introduction	19
	4.1.1 Port Interval	19
	4.2 Get Results via Ethernet Raw	19
	4 2 1 TCP versus UDP	19
	4.2.2. ASCII versus Binary	19
	4.2.3. Attributes	20
	4.2.4. Default Formatting Strings	20
	4.3. Control the Sensor via Ethernet Raw	
	4.3.1. Basic Principles	23
	4.3.2. Command Syntax	23
	4.3.3. Select Reference Object	23
	4.3.4. Image Trig	24
	4.3.5. Single Port Solution	24
	5. EtherNet/IP	25
	5.1. Introduction	25
	5.2. Get Results via Ethernet/IP	25
	5.2.1. Attributes	25
	5.2.2. Example Formatting Strings	25

Inspector PI-series

	5.2 Control the Sonsor via EtherNet /IP	20
	5.3. Control the Sensor via EulerNet/ IF	21
	5.3.2 Command Suntay	21
	5.3.2. Command Syntax	33
	5.3.4 Image Trig	32
	5.3.4. Image mg	32
	5.3.5. Input Assemblies, Result Channel	22
6 Et	5.5.0. Assembles command channel	33
0. EU	6.1 Introduction	30
	6.2. EtherCAT Eurotion Overview	20
	6.2. EtherCAT communication	27
	6.2.1 EtherCAT Communication Specification	27
	6.2.2. EtherCAT LEDic	27
	6.2.2. EtherCAT process data taggle indicators	31
	6.3.4. EtherCAT evels time	30 20
	6.4. Cot Depute via EtherCAT	30 20
	6.4.1 Mandeteny TyDDO:2	30 20
	6.4.2. Ontional TypDO:s	30
	6.4.2. Optional TXPDU:S	38
	6.4.4. Illumination trig output	40
	6.4.4. Illumination trig output	41
	6.4.5. Example Formatting Strings	41
	6.5. Control the Sensor Via EtherCAI	44
	6.5.1. Iriggering of the inspector	44
	6.5.2. Using the CoE command channel	45
	6.6. EOE - Web Server/ Web API	48
	6.6.1. Error Codes - EOE	49
	6.7. FOE - Configuration Handling and Firmware Download	49
	6.7.1. FOE Download (to Inspector)	50
	6.7.2. FOE Upload (to Master)	50
	6.7.3. FoE Error Codes	51
	6.8. DC - Distributed Clock (DC) features	51
	6.8.1. Time Stamp	51
	6.8.2. Programmable Trig	52
	6.9. EtherCAT related constants and variables	53
	6.9.1. Station Alias	53
	6.9.2. Vendor Id	54
	6.9.3. Revision Number	54
	6.9.4. Serial Number	54
	6.9.5. Device Type	54
	6.9.6. Manufacturer Hardware Version	54
	6.9.7. Manufacturer Software Version	54
	6.10. PDO Overview	54
	6.11. ESI file	57
3. Appendi	X	58
7. Re	sult Output Formatting	59
	7.1. XML Based Formatting	59
	7.2. XML Formatting	59
	7.3. Container Specific Tags	60
	7.3.1. General Tags	64
	7.3.2. Attributes	65
A. Co	mmand Channel	67
	A.1. Command Syntax	67
	A.1.1. Commands ID numbers for EtherNet/IP and EtherCAT	68
	A.2. Command descriptions	68
	A.3. Error Codes	77
	A.4. Version information	78
	A.5. Command Examples	79
	A.5.1. Command Examples Ethernet Raw	79

A.5.2. Command Examples EtherCAT	. 80
B. Web API	. 83
B.1. Select Reference Object in Run Mode	. 83
B.1.1. Create a Session Cookie	. 83
B.1.2. Login	. 83
B.1.3. Select Reference Object	. 83
B.1.4. Logout	. 84
B.2. Restore Configuration	. 84
B.2.1. Create Session Cookie	. 84
B.2.2. Login	. 84
B.2.3. Prepare Restore Mode	. 85
B.2.4. Transfer Restore File to Device	. 85
B.2.5. Device Restart	. 85
Index	. 86

Introduction

Introduction

The Reference Manual is a complement to the Operating Instructions for Inspector PI50 and covers the functionality of all product variants. See Technical Data section of the Operating Instructions for Inspector PI50 to see which features each product variant supports.

The Operating Instructions for Inspector PI50 describes how to set up and configure the interfaces via **SOPAS Single Device**.

The Reference Manual contains detailed information about the interfaces including syntax and available functionality. It focuses on Inspector PI50 specific topics and does not describe the basic technology behind each interface.

The details of the result output formatting and the contents and syntax of the command channel are shared by several interfaces. They are described in an appendix valid for all relevant interfaces.

1.1 Interfaces Overview

The Reference Manual contains detailed information for the following interfaces:

- I/O Extension Box is used to increase the number of available input and output connections
- Web API interface is intended for integration with external HMI implementations
- Ethernet Raw interface is intended for integration with external PLC equipment
- EtherNet/IP interface is intended for integration with external PLC equipment following the EtherNet/IP communication standard
- EtherCAT interface is intended for integration with external PLC equipment following the EtherCAT communication standard

See also Technical Data section of the Operating Instructions for Inspector PI50 for descriptions of which features each interface supports, and which interfaces that are available for each product variant.

1.2 Intended Readers

The intended readers of the Reference Manual are users working with integration between the Inspector PI50 and other equipment, for example PLC programmers and Custom HMI developers.

The readers are assumed to have knowledge about the Inspector PI50 product and features as described in the Operating Instructions for Inspector PI50. The readers are also assumed to have knowledge about the basic functionality of the technology of the interfaces used for the integration.

Interfaces

I/O Extension Box

The Inspector PI50, VSPP-5F2113 and VSPP-5F2413, can be connected to an I/O extension box that increases the number of digital inputs and outputs. The I/O Extension box is available as an accessory from SICK. This section covers how the I/O extension box is connected to the Inspector PI50, and how it is configured. The I/O extension box is not available for the Inspector PI50 ECAT, VSPP-5F2134.

The following basic steps are required to use the I/O extension box with the Inspector PI50. Details about the steps are found in the subsequent sections.

- 1. Connect the I/O extension box to the network.
- 2. Configure the IP address of the I/O extension box to match the settings of the network, and the Inspector PI50.
- 3. Enter the IP address of the I/O extension box in the SOPAS Single Device application.
- 4. Activate the inputs and/or outputs on the I/O extension box depending on the application.

Note

The **SOPAS Single Device** application should be closed or set to offline when the power to the I/O box is disconnected. The I/O extension box needs to be restarted if the IP address is changed or if the connections to the inputs and output on the box are changed.

2.1 Physical Network Connection

To minimize network latency, it is recommended that the I/O extension box is connected directly to the Inspector PI50. The I/O box has a network switch so that a PC running **SOPAS** Single Device can be connected via the I/O box.

2.2 Configuration of the IP Address on the I/O Extension Box

This section briefly describes how to configure the I/O extension box for operation with the Inspector PI50. For details, please refer to the user manual delivered with the I/O extension box.

The IP address of the I/O extension box must be compatible with the addresses of the Inspector PI50 and of the PC. For details of how to set and view the IP address of the Inspector PI50, please refer to the Operating Instructions for Inspector PI50.

The following is an example of how the IP addresses can be configured for the Inspector PI50, the I/O box and the PC.

Inspector PI50	I/O Extension Box	PC
192.168.1.110	192.168.1.3	192.168.1.30

2.2.1 Basic Configuration of the IP address

The address selection switch on the I/O extension box configures the host part of the IP address, that is, the last of the four parts of the IP address. By default, the first three parts of the address (also known as the network address) are set to 192.168.1. If the switch is set to a value other than 0 (all switches set to Off) or 255 (all switches set to On), the I/O extension box will use the host part of the IP address assigned by the switch.

Figure 2.2 Example

The setting above configures the I/O extension box to have a host ID of 3 corresponding to the binary value "0000011" where switch 1 is bit 0 (LSB) and switch 8 is bit 7 (MSB). The I/O box will then have an IP address of 192.168.1.3.

Advanced Configuration of the IP Address

If the network part of the IP address must be changed from the default 192.168.1 for the I/O extension box, the internal web server of the I/O extension box can be used. For details please refer to the manual delivered with the I/O extension box.

2.3 Setup of the I/O Extension Box in the SOPAS Single Device Application

The communication with the I/O extension box is configured using the Interfaces and I/O Settings dialog from the InspectorPI50 menu. Check the Digital I/O and I/O extension boxes in the Interfaces tab. The I/O extension box is disabled if Ethernet is enabled in the same tab.

Interfaces and I/O Settings	X
I/O extension box setup Ethernet Raw EtherNet/IP Web Server Interfaces Digital I/O External object selection	
Enable interfaces Digital I/O I/O extension box	
EtherNet/IP	
Veb Server	
The I/O extension box and Ethernet interfaces cannot be enabled at the same time.	_

Figure 2.3 I/O Extension Box setup

Communication Mode

It is possible to adjust the way that the Inspector PI5O is communicating with the I/O extension box. The settings are made in the I/O extension box setup tab in the Interfaces and I/O Settings dialog from InspectorPI5O menu. There are three modes available:

- Robust mode. This is the default communication mode, and it is the recommended one if the Inspector PI50 is connected to the **SOPAS Single Device** application during operation.
- Fast mode. This mode allows the Inspector PI50 to operate at a higher frame rate but there is a risk that some data in the communication with the I/O extension box is lost if there is high load on the network. This mode shall not be used if the Inspector PI50 is connected to the **SOPAS Single Device** application during operation.

• User mode. This is the advanced communication mode where it is possible to configure the number of retries that the Inspector PI50 performs, and the timeout for each retry. The timeout is the time (in milliseconds) that the Inspector PI50 is waiting for a reply from the I/O extension box for a request to set outputs or read inputs.

IP Configuration

To be able to connect to the I/O extension box, the IP address of the I/O extension box must be specified in the **SOPAS Single Device** application.

To specify the IP address of the I/O extension box:

- 1. Open the Interfaces and I/O Settings dialog from the InspectorPI50 menu. Enter the selected IP address of the I/O extension box setup tab in the four fields separated with dots.
- 2. Click Apply to store the settings.

Interraces	Digital I/O External object selection
/O extension bo	setup Ethernet Raw EtherNet/IP Web Serve
O extension bo:	communication mode
Robust mode	Advanced
🔿 Fast mode	Timeout (ms):
-	
 User mode Robust mod during operation 	Retries:
User mode Robust mod during operation when running th (O extension ho)	Retries: 10
User mode Robust mod during operation when running th O extension box	Retries:

Figure 2.4 Set up mode and IP address

Verify Connection

It is possible to verify that the connection to the I/O extension box can be established by clicking the **Verify connection** button. The **SOPAS Single Device** application will then try to connect to the I/O extension box, and a message will be displayed informing if the I/O extension box was found.

Note

It is possible to configure the Inspector PI50 for use with the I/O extension box even when the I/O extension box is not available. As soon as the Inspector PI50 detects the I/O extension box on the network, it will connect to it and start using it as configured.

2.3.1 Enabling the I/O Extension Box

The use of the inputs and outputs on the I/O extension box is enabled on the Digital I/O tab of the Interface and I/O Settings dialog from the InspectorPI50 menu.

2.4 Input and Output Connections

When delivered, the I/O extension box contains 4 digital inputs and 8 digital outputs. The digital outputs can be expanded to 16, and the digital inputs of the Inspector PI5O can be extended to 5.

Please refer to the manual delivered with the I/O extension box for details on how to connect the power supply to the box, and where to find the digital inputs and outputs.

2.4.1 Special Conditions During Startup

The following applies if the Inspector PI50 is configured to use the inputs of the I/O extension box for object selection:

If the I/O extension box is not available when the Inspector PI50 starts up, the Inspector PI50 will use the last reference object selected in the **SOPAS Single Device** application before saving to flash. Once the I/O extension box is available, the Inspector PI50 will read the inputs of the box, and select the corresponding reference object.

2.4.2 Connection to the I/O Extension Box lost During Operation

If the connection to the I/O extension box is lost during operation, the last status of the inputs on the box will be used until the connection is re-established.

2.4.3 Object Selection with I/O Extension Box

The status of the inputs on the I/O extension box is checked in the end of each inspection cycle. If the Inspector PI5O is configured to use external image trig, the status of the external inputs will only be checked when an image trig signal has been received.

2.4.4 Timing Issues

The digital outputs on the I/O extension box shall be read at minimum delay time as displayed in the **SOPAS Single Device** application.

2.4.5 Use of the Digital Outputs for Logic

The digital outputs on the I/O extension box are not guaranteed to be jitter-free. It is not recommended to use these outputs for direct control of other devices. The I/O extension box shall be connected to a PLC for process control.

2.4.6 Change of Modules in the I/O Extension Box

The Inspector PI50 supports I/O extension box configurations with up to 16 digital outputs and 5 digital inputs (The standard configuration of the I/O extension box contains 8 digital outputs and 4 digital inputs.). The configuration of an I/O extension box can be changed by adding/removing I/O modules to/from the I/O extension box. I/O modules are available as an accessory from SICK. For details about Accessories Ordering information see the Operating Instructions for Inspector PI50.

Perform the following steps to connect and use more I/O modules:

- 1. Close the SOPAS Single Device application.
- 2. Disconnect the power from the I/O extension box.
- 3. Connect the additional I/O modules (inputs and/or outputs) to the I/O extension box. Please refer to the manual delivered with the I/O extension box for details.
- 4. Re-connect the power to the I/O extension box.
- 5. Re-start the **SOPAS Single Device** application.

The additional digital outputs are now be available in the SOPAS Single Device application.

2.5 Troubleshooting

2.5.1 The I/O LED Flashes 10 Times

If the power to the I/O extension box has been disconnected for a longer period of time, the internal clock in the box will be reset. The I/O LED on the box will then flash 10 times in red. This is not a serious error, and the I/O extension box can still be used together with the Inspector PI50 without any problems.

2.5.2 No Contact with the I/O Extension Box

Ensure that the network card on the PC has the same network address, for instance 192.168.1, as the I/O extension box. The host part of the IP address (that is the last number in the IP address) must not be the same as for the I/O extension box or the Inspector PI50.

There are two tools available in Windows to check the network connection and the IP settings:

• Ping. Open the command prompt, and type ping followed by the IP address of the I/O extension box. If the I/O extension box is available the following text will be displayed: Reply from x.x.x.x (where x.x.x.x is the IP address of the I/O extension box). If the I/O extension box could not be found an error message is displayed, for instance Request timed out or Destination host unreachable.

Example: ping 192.168.1.3

• **Ipconfig.** Open the command prompt and type **ipconfig.** The current status for the network cards on the PC will then be displayed. Ensure that the network settings are corresponding to the setting for the I/O extension box. The current IP address for the Inspector PI50 can be viewed by selecting Device Info from the **InspectorPI50** menu.

The web browser on the PC must be configured not to use a proxy when communicating with the web server in the I/O extension box.

2.5.3 High Number of Unanswered Requests to the I/O Extension Box

The advanced communication mode, User mode, can be used to fine tune the communication with the I/O extension box. It is recommended to try to increase the timeout as a first step, and if this does not work, try to increase the number of retries. Increasing the number of retries will reduce the inspection speed.

If the problem persists even if the timeout and the number of retries have been increased, verify that the network topology does not block the use of UDP packets.

3

Web Interface

3.1 Introduction

The Web Interface is available in two variants: the Web API and the Web Server. The Web API is used to create custom HMI solutions and offers a wide range of functions to control and monitor the Inspector PI50. A subset of these functions is employed by the Web Server, providing intuitive operation of the Inspector PI50 and high accessibility through a standard web browser.

The command channel, shared with other interfaces, is available through the Web API as well as specific functions to access images and to backup and restore configurations.

The Web Server interface is described in the Operating Instructions for Inspector PI50. The Web API is described in this manual.

3.2 Get Results via Web API

The Web API presents the inspection results as overlay graphics in the live image. It is not possible to get detailed inspection results through the Web API.

3.2.1 Live Image

The live image can be retrieved through the Web API by a live image request using the URL http://<IP-address>/LiveImage.jpg The response to the request is a data buffer containing a JPEG image.

If the image is not available, an empty image is returned with a smaller size than a normal image.

Note

The live image is not available when **SOPAS Single Device** or the Inspector Viewer is connected to the Inspector PI50.

Live image response can be much slower when activating the Send to FTP feature. The FTP image transfer function has higher priority.

Example URLs

Request a live image without overlay graphics:

http://192.168.1.110/LiveImage.jpg

The response to the request is a data buffer containing a JPEG image.

Request a live image with overlay graphics:

http://192.168.1.110/LiveImage.jpg?ShowOverlay

3.2.2 Logged Images

Logged images can be retrieved using the URL http://<IP-address>/getP50LogImage?00 where the argument "00" is the image number. The image number is two digits in the range [00, 29]. The device keeps writing to the log and therefore the log first has to be locked to be able to retrieve an image. This is done by using the URL http://<IP-address>/LockLog

The response to the request is a data buffer containing a JPEG image. An empty image with a smaller size than a normal image is returned if no log image is available for a certain position.

Example URL

http://192.168.1.110/LockLog

http://192.168.1.110/getP50LogImage?00

To start logging images again the log has to be unlocked first and this is done by using the URL http://<IP-address>/LockLog?Unlock

Example URL

http://192.168.1.110/LockLog?Unlock

3.3 Control the Sensor via Web API

The Web API supports the command channel used to read and update parts of the device configuration.

The Web API also supports the functionality to do a backup of the device configuration to a file and to restore the configuration again. This is a convenient way to handle configurations without installing and using **SOPAS Single Device**.

3.3.1 Basic Principles

The command channel has a set of basic principles:

- Only one command at a time can be executed.
- Each command is followed by a return message (ACK) that includes the result of the command as well as error codes.
- The commands are not unique to a specific task, it is the commands together with its parameters that uniquely points to a specific configuration change (see list of command types and parameters in Appendix A, "Command Channel" (page 67)).
- Writing a parameter can typically only be done when the device is in Edit mode. Reading a parameter can be done in both Edit and Run mode.
- It is possible to block configuration changes by unchecking the Allow changes via Web Server checkbox in the Web Server tab in the dialog Interfaces and I/O Settings in InspectorPI50 menu.

3.3.2 Command Syntax

The Web API command channel has the following syntax:

http://<IP-address>/CmdChannel?<command>_<identifier>_<argument 1>_<argument 2>..._<argument N>

The ACK message has the following syntax:

<ACK Command> <identifier> <errorCode> <returnValue1> <returnValue2> ...
<returnValueN> <errorMessage>

The command is sent as an ASCII string. The combination of a command with its parameters will either change the device configuration or fetch information from the device. For more command examples see Section A.1, "*Command Syntax*" (page 67) and Section A.5, "*Command Examples*" (page 79).

Note

The command syntax differs from other interfaces where the initial part http://<IP-address>/CmdChannel? is added and all space characters (" ") are replaced by an underscore character ("_"). The ACK messages still contain spaces.

Example URL

The successful execution of the following command

http://192.168.1.110/CmdChannel?sINT_1_1

will perform the command (to select reference object with index 1) and then return an HTML page with a body containing the following string:

rsINT 1 0

while a failed command may return

rsINT 1 8100 Can not change ref bank in Run mode.

3.3.3 Current Reference Object

The reference image of the current reference object can be retrieved using the URL http://<IP-address>/ActiveReferenceImage.jpg

The response to the request is a data buffer containing a JPEG image.

Example URL

http://192.168.1.110/ActiveReferenceImage.jpg

3.3.4 Select Reference Object in Run mode

It is possible to select reference object also in Run mode.

The operation is a multiple step procedure that requires a login. The details of the procedure is described in Appendix B, "*Web API*" (page 83).

Note

It is also possible to select reference object in Edit mode using the command channel, see Section A.1, "*Command Syntax*" (page 67).

3.3.5 Backup and Restore Configuration

It is possible to backup and restore the device configuration through the Web API. This is the same functionality also available through the standard web pages of the Web Server interface.

The backup data contains the device name and reference objects including corresponding inspection and interface settings. Examples of data not included in the backup are IP address and chessboard calibration settings.

Note

The backup and restore functionality of the Web Server and the Web API corresponds to the **Save Device File** functionality of **SOPAS Single Device**. The file format created by the Web API is not compatible with the ".sdv" file format.

Backup Configuration

The URL to export a configuration is http://<IP-address>/backup_config?config1

Example URL:

http://192.168.1.110/backup_config?config1

The result of the request is a buffer containing the device configuration. This file can be stored in the file system of the receiving unit and used later in the restore procedure.

The Web Server standard web pages requires a login to perform a backup. A login is not required when doing a backup through the Web API.

Restore Configuration

The restore operation takes a device configuration created with the backup functionality and replaces the current configuration with the configuration in the backup file.

The operation is a multiple step procedure that requires a login. The details of the procedure is described in Appendix B, "Web API" (page 83).

The operation may take several minutes and the Inspector PI50 is automatically restarted after the configuration has been transferred to the Inspector PI50.

Note

During the restore operation the device is set in a special restore mode only expecting restore operation requests. Operations and requests via other interfaces like field buses, SOPAS Single Device, Inspector Viewer or Web browsers (other than) shall then be avoided since they may interfere with the restore operation.

3.4 Handle the Web API

The Web Server and Web API interfaces can be activated or deactivated. When activated, it is possible to select port number and to allow command channel changes. The same settings apply both to the Web Server and to the Web API. The Web interfaces are configured in the **Interfaces and I/O settings** dialog in the **InspectorPI50** menu.

The Web API is based on standard HTTP request and responses. Recommended request timeout time is 3 seconds to allow for images to be transferred properly.

4 Ethernet Raw

4.1 Introduction

To set up the connection and output results for Inspector PI50 using Ethernet Raw see Operating Instructions for Inspector PI50.

4.1.1 Port Interval

The default interval for the ports used by the communication channels is 2114-2116. This interval can be changed, e.g. if the controlling device does not support the default interval. The interval is controlled by the field **Start port** in the **Ethernet Raw** tab of the **Interface and I/O settings** dialog.

The ports are assigned according to the following:

- Ethernet Result Output = start port (default 2114)
- Command channel = start port + 1
- Dedicated image trig = start port + 2

4.2 Get Results via Ethernet Raw

The following settings are done in the Ethernet Result Output dialog under Inspector PI50 menu.

4.2.1 TCP versus UDP

The basic difference between these protocols, for the Ethernet result output function, is which side initiates the connection to receive/send the data.

UDP:

TCP:

- (1) PC/PLC initiates the connection
- (2) Inspector PI50 sends results to the PC/PLC
- ③ PC/PLC acknowledges that results are received (built into the TCP protocol)
- Inspector PI50 sends results to the specified IP address and port, without knowing if it has been received

Note

For TCP the default port number that the Inspector PI50 listens to is 2114.

4.2.2 ASCII versus Binary

The Inspector PI50 supports the possibility to choose whether the configured output is to be sent in ASCII format or in a binary format. The parameters that should be transferred in binary format are also defined in the XML based formatting, but some tags are not supported in the binary format.

If such a parameter is added to the formatting it will be ignored by the Inspector PI50. In binary mode all added text and text formatting, for example <SPACE/>, are ignored. Only the

values of the parameters describing results from the inspected images are sent out. For details on which tags can be used in binary output see Section 7.2, "XML Formatting" (page 59).

4.2.3 Attributes

Attributes are used to control the formatting and identification of inspections. Some of them can be controlled directly in the **Ethernet Result Output** dialog in the section **Message settings**. All available attributes are listed in the table in section XML Formatting in Section 7.2, "XML *Formatting*" (page 59).

8 8 /	
Min number of digits	Choose the minimum number of digits (including decimal point) to be sent out in the result. If the value to be sent out has less number of digits, the result is padded with leading zeros. Default value is 0 which means the number of digits that will be sent will differ depending on how many digits are needed. Note : This attribute is only applicable for ASCII
Number of decimals	Choose number of digits to be sent out after the decimal point for parameters with decimals. This will be a rounded value. Default value is 2. Max number of decimals is 9. Note : This attribute is only applicable for ASCII
Degrees/Radians	Choose unit for the rotation for object locator and angle for blobs.
Little/Big Endian	Only applicable when using binary format. This describes the order of the bytes transferred from the device on Ethernet. When using Little endian the least significant byte is trans- ferred first and for Big endian the most significant byte is transferred first. See the 2-byte example in tables below:

	Most significant byte	Least significant byte
Value to be sent from device:	10000100	01110000

Transfer order	First transferred byte	Second transferred byte
Little endian	01110000	10000100
Big endian	10000100	01110000

Pixels/Millimeters

Choose if position coordinates should be sent in pixel or millimeter unit. **Note**: The device must be calibrated for it to be possible to use the "mm" attribute. An error message is given in the output string if the device is not calibrated and mm is chosen.

4.2.4 Default Formatting Strings

The auto-generated default string will look different depending on the configuration in the selected reference object. The intention with the default string is to give an idea of the available tags and to be a good starting point for creating the best format for the application that should be solved.

Below follow some short descriptions of default strings, or part of default strings, for different configurations. For more information about the XML formatting see Chapter 7, "*Result Output Formatting*" (page 59).

Ethernet Raw

Default string for configuration with only an Object locator

```
<MESSAGE_SIZE/><NEWLINE/> ①
Image_number:<SPACE/><IMAGE_NUMBER/><NEWLINE/> ②
Object_locator.<NEWLINE/> ③
<OBJECT_LOC> ④
Located:<SPACE/><DECISION/><NEWLINE/> ⑤
Score:<SPACE/><SCORE/><NEWLINE/> ⑥
Scale:<SPACE/><SCALE/><NEWLINE/> ⑦
Position_(X,Y):<SPACE/>(<X/>,<Y/>)<NEWLINE/> ⑧
</OBJECT_LOC> ⑩
```

- (1) Size of the message, number of characters (ASCII) or bytes (binary)
- (2) Explanatory text and analyzed images number
- (3) Explanatory text
- (4) Start of container for object locator
- (5) Explanatory text and value for locator decision; 0=not found, 1=found
- Explanatory text and locator score value, in percent how well of the object is found in the object locator due to match settings
- (7) Explanatory text and locator scale value, factor of analyzed live image compared to taught reference object
- (8) Explanatory text and x and y position of the reference point. This can be outside the image and therefore negative. Shown in "pixels" or "mm"
- (9) Explanatory text and locator rotation, in degrees or radians depending on the configured value in the Ethernet Result Output settings dialog
- ID End of container for object locator

Result of validating output string with only an Object locator

The result of validating the default formatting output string with output format ASCII will be as follows:

```
97
Image_number: 14471
Object_locator.
Located: 1
Score: 96.00
Scale: 1.00
Position_(X,Y): (291.52,238.55)
Rotation: 0.22
```

The result of validating the default formatting output string for only an object locator with output format binary will be as follows:

Binary output OK. Number of bytes: 27

Part of default string for configuration with a Blob

```
Blob_tool.<NEWLINE/> ①
<BLOB index="0" name="Blob 1"> ②
Found_blobs:<SPACE/><FOUND_BLOBS/><NEWLINE/> ③
Blob_information:<NEWLINE/> ⑤
Position_(X,Y):<SPACE/>(<X/>,<SPACE/><Y/>)<NEWLINE/> ⑥
```

```
Area:<SPACE/><AREA/><NEWLINE/> ⑦
Angle:<SPACE/><ANGLE/><NEWLINE/> ⑧
Structure:<SPACE/><EDGE_PIXELS/><NEWLINE/> ⑨
Touches_ROI_border:<SPACE/><EDGE_FLAG/><NEWLINE/> ⑩
</BLOB> ①
```

- (1) Explanatory text
- (2) Start of container for the blob tool named "Blob 1" and instruction to fetch the first (index="0") blob in accordance with the Sort by criteria
- 3 Explanatory text and number of found blobs in analyzed image
- (4) Separator
- (5) Explanatory text
- (6) Explanatory text and information of blob with index="0" concerning position and center of gravity (x and y position), in "pixels" or "mm"
- (7) Explanatory text and blob (index="0") area, in "pixels"
- (8) Explanatory text and blob (index="0") angle value, in degrees or radians depending on the configured value in the **Ethernet Result Output** settings dialog
- (9) Explanatory text and blob (index="0") structure value, number of edge pixels inside the blob
- Explanatory text and blob (index="0") edge value, 0=blob fully within ROI, 1= blob touches ROI border
- (1) End of container for blob tool

Result of validating output string with a Blob

The result of validating the default formatting output string with output format ASCII will be as follows:

```
Blob_tool.
Found_blobs: 16
Blob_information:
Position_(X,Y): (177.00, 156.89)
Area: 75
Angle: 154.33
Structure: 0
Touches_ROI_border: 0
```

The result of validating the default formatting output string for a blob with output format binary will be as follows:

Binary output OK. Number of bytes: 28

Part of default string for configuration with a Polygon

```
Polygon1<POLYGON name="Polygon1"><NEWLINE/> ①
Corners:<SPACE/><NUM_CORNERS/><NEWLINE/> ②
<CORNERS corners="all">(X,Y):<SPACE/>(<X/>,<Y/>)<NEWLINE/> ③
</CORNERS> ④
</POLYGON> ⑤
```

- Explanatory text and start of polygon container tag for the polygon tool named "Polygon 1"
- (2) Explanatory text and number of polygon corners
- (3) Start of container tag for polygon corners with instruction to loop over all polygon corners, explanatory text, and corner position
- (4) End of container for polygon corners

(5) End of container for polygon

Result of validating output string with a Polygon

The result of validating the default formatting output string with output format ASCII will be as follows:

Polygon_1
Corners: 4
(X,Y): (329.15,235.70)
(X,Y): (371.31,235.60)
(X,Y): (372.58,314.97)
(X,Y): (329.82,315.22)

The result of validating the default formatting output string for a polygon with output format binary will be as follows:

Binary output OK. Number of bytes: 39

4.3 Control the Sensor via Ethernet Raw

The command channel makes it possible to read and write a defined set of configuration parameters, and to trigger image acquisition, via UDP or TCP. This section describes how to setup image triggering and command channel settings in **SOPAS Single Device**, as well as the syntax of the command channel.

4.3.1 Basic Principles

The command channel has a set of basic principles:

- Only one command at a time can be executed.
- Each command is followed by a return message (ACK) that includes result of the command as well as error codes.
- The commands are not unique to a specific task, it is the commands together with their parameters that uniquely point to a specific configuration change (see list of command types and parameters in Appendix A, "Command Channel" (page 67)).
- Writing a parameter can typically only be done when the device is in Edit mode. Reading a parameter can be done in both Edit and Run mode.
- It is possible to block configuration changes by deselecting the setting Allow changes via Ethernet Raw in the Ethernet Raw tab in the dialog Interfaces and I/O Settings in InspectorPI50 menu.

4.3.2 Command Syntax

The command channel has the following syntax:

<command> <identifier> <arg1> <arg2> ... <argN>

The ACK message has the following syntax:

```
<ACK Command> <identifier> <errorCode> <returnValue1> <returnValue2> ...
<returnValueN> <errorMessage>
```

The command is sent as an ASCII string. The combination of a command with its parameters will either change the devices configuration or fetch information from the device. For more command examples see Section A.5, "*Command Examples*" (page 79) and Section A.1, "*Command Syntax*" (page 67).

4.3.3 Select Reference Object

To enable reference object selection via Ethernet Raw do the following:

- 1. Choose Interface and I/O Settings from the InspectorPI50 menu.
- 2. In the tab Interface choose Ethernet and Ethernet Raw in the listbox.

To select reference object via command channel change to Edit mode, sMOD 1, change the value to select the reference object, sINT 1 <object index> and then change back to Run mode sMOD 0. The object index that corresponds to each reference object can be found in the Reference object list in the Main view.

4.3.4 Image Trig

It is possible to trigger the image acquisition via Ethernet. The communication runs on UDP or TCP port 2116 (configurable). In order to use this function the triggering has to be enabled in **SOPAS Single Device**. In the **InspectorPI50** menu and **Interfaces and I/0 settings** dialog check the **Ethernet** box and in the list **Ethernet Raw** in the **Interfaces** tab. For the selected reference object, choose **Triggered by Ethernet** in the **Image settings** tab.

4.3.5 Single Port Solution

In real-time applications, the sensor is controlled using three ports. However, it is possible to use only the command port (default 2115) to control the sensor. The single port solution is only recommended for applications where the cycle time is significantly larger than the image analysis time. One reason for this is that the image acquisition has a lower priority on the command port. Another reason is that the Ethernet Result string must be retrieved from the sensor, i.e. image trig and result handling cannot be performed in parallel when using the single port solution.

This is how the sensor is controlled by using only the command port:

- The image acquisition is performed by the TRIG command (with lower priority).
- The Ethernet Result Output string is retrieved explicitly by the controlling device, e.g. a PLC. This is done by the command gRES. The sensor does not send the result automatically on this port.
- All other commands on the command channel are available as in the standard three port solution

EtherNet/IP

5.1 Introduction

The Inspector PI50 can be controlled and results can be read out using the EtherNet/IPTM standard, **EtherNet** see http://www.odva.org/. To be able to do this some settings have to be done first.

To set up the connection and output results for Inspector PI50 using Ethernet/IP see Operating Instructions for Inspector PI50.

5.2 Get Results via Ethernet/IP

The following settings are done in the Ethernet Result Output dialog in the Inspector PI50 menu.

5.2.1 Attributes

Attributes are used to control the formatting and identification of inspections. Some of them can be controlled directly in the Ethernet Result Output dialog in the section Message settings. All available attributes are listed in the table in section XML Formatting in Section 7.2, "XML Formatting" (page 59).

Degrees/Radians Choose unit for the rotation for object locator and angle for blobs.

Pixels/Millimeters Choose if position coordinates should be sent in pixel or millimeter unit. Note: The device must be calibrated for it to be possible to use the "mm" attribute. An error message is given in the output string if the device is not calibrated and mm is chosen.

5.2.2 **Example Formatting Strings**

The auto-generated example string will look different depending on the configuration in the selected reference object. The intention with the default string is to give an idea of the available tags and to be a good starting point for creating the best format for the application that should be solved.

Below follow some short descriptions of example strings, or part of default strings, for different configurations. For more information about the XML formatting see Chapter 7, "Result Output Formatting" (page 59).

Example string for configuration with only an Object locator

```
<IMAGE_NUMBER dataType="DINT" pos="0"/> ①
<OBJECT LOC> (2)
<DECISION dataType="SINT" pos="0"/> ③
<SCORE dataType="REAL" pos="0"/> ④
<SCALE dataType="REAL" pos="1"/> (5)
<X dataType="REAL" pos="2"/> 6
<Y dataType="REAL" pos="3"/> 🕖
<ROTATION dataType="REAL" pos="4"/> (8)
</OBJECT_LOC> 9
```

- Analyzed image's number
- Start of container for object locator (2)
- Decision show if object is found (=1) or not found (=0) 3

Inspector PI-series

- (4) Score shown in percent how well of the object is found in the object locator due to match setting
- (5) Scale is the factor of analyzed live image compared to taught reference object
- (6) Position (x) of the reference point of the object locator
- (7) Position (y) of the reference point of the object locator
- (8) Rotation of the object locator, in degrees or radians depending on the configured value in the **Ethernet Result Output** dialog
- (9) End of container for object locator

Attribute dataType	Casts to the specified datatype. When using EtherNet/IP the at- tribute dataType specifies the dataType section in the selected assembly. The attribute dataType can be SINT, INT, DINT or REAL. For more details about dataType and pos see table in Sec- tion 7.3.2, "Attributes" (page 65).
Attribute pos	Used by EtherNet/IP to determine a position in the dataType section in the selected assembly. The first position number of the dataType section is 0. The range of the attribute pos depends on which assembly is used. For example if assembly 1 and dataType section SINT is selected the range of position is 8, i.e. [0, 7]. For more details about dataType and pos see table in Section 7.3.2, "Attributes" (page 65).

Therefore the value of the attributes dataType and pos together specifies which parameter in the assembly the result value should be mapped to.

Result of validating output string with only an Object locator

The validating in SOPAS Single Device will give the following result:

EtherNet/IP assembly string OK.

Result in PLC with only an Object Locator

The table below describes how the Assembly 1's data structure will be populated when using the configuration example above.

Position ref (pos) from XML configuration	Data type (dataType)	Offset byte	Variable from example above
0	SINT	0	DECISION
1	SINT	1	
2	SINT	2	
3	SINT	3	
4	SINT	4	
5	SINT	5	
6	SINT	6	
7	SINT	7	
0	INT	8	
1	INT	10	
2	INT	12	
3	INT	14	
4	INT	16	
5	INT	18	
6	INT	20	
7	INT	22	

Position ref (pos) from XML configuration	Data type (dataType)	Offset byte	Variable from example above
0	DINT	24	IMAGE_NUMBER
1	DINT	28	
2	DINT	32	
3	DINT	36	
4	DINT	40	
0	REAL	44	SCORE
1	REAL	48	SCALE
2	REAL	52	Х
3	REAL	56	Y
4	REAL	60	ROTATION

Example string for configuration with only an Blob

```
<IMAGE_NUMBER dataType="DINT" pos="0"/> ①
<BLOB index="0" name="Blob 1"> ②
<FOUND_BLOBS dataType="SINT" pos="0"/> ③
<X dataType="REAL" pos="0"/> ④
<Y dataType="REAL" pos="1"/> ⑤
<AREA dataType="DINT" pos="1"/> ⑥
<ANGLE dataType="REAL" pos="2"/> ⑦
<EDGE_PIXELS dataType="DINT" pos="2"/> ⑧
<EDGE_FLAG dataType="SINT" pos="1"/> ⑨
</BLOB> ⑩
```

- () Analyzed image's number, attributes dataType and pos
- (2) Start of container for blob, Index number of the found blob according to current blob sorting order. Index 0 is the first blob. Name refers to the blob tool's name in the Tools tab
- (3) Number of found blobs
- (4) Blob center of gravity (x position), "pixels" or "mm"
- (5) Blob center of gravity (y position), "pixels" or "mm"
- 6 Blob area in pixels
- Angle of the blob, in degrees or radians depending on the configured value in the Ethernet Result Output dialog
- (8) Structure value (number of edge pixels inside the blob)
- (9) Edge flag: 0= the blob is fully within the ROI, 1=the blob touches ROI border
- (1) End of container for Blob

0				
Attribute dataType	Casts to the specified datatype. When using EtherNet/IP the at- tribute dataType specifies the dataType section in the selected assembly. The attribute dataType can be SINT, INT, DINT or REAL. For more details about dataType and pos see table in Sec- tion 7.3.2, "Attributes" (page 65).			
Attribute pos	Used by EtherNet/IP to determine a position in the dataType section in the selected assembly. The first position number of the dataType section is 0. The range of the attribute pos depends on which assembly is used. For example if assembly 1 and dataType section SINT is selected the range of position is 8, i.e.			

[0, 7]. For more details about dataType and pos see table in Section 7.3.2, "*Attributes*" (page 65).

Therefore the value of the attributes dataType and pos together specifies which parameter in the assembly the result value should be mapped to.

Result of validating output string with only an Blob

The validating in SOPAS Single Device will give the following result:

EtherNet/IP assembly string OK.

Result in PLC with only an Blob

The table below describes how the Assembly 1's data structure will be populated when using the configuration example above.

Position ref (pos)	Data type Offset byte		Variable from
from XML configuration	(dataType)		example above
0	SINT	0	FOUND_BLOBS
1	SINT	1	EDGE_FLAG
2	SINT	2	
3	SINT	3	
4	SINT	4	
5	SINT	5	
6	SINT	6	
7	SINT	7	
0	INT	8	
1	INT	10	
2	INT	12	
3	INT	14	
4	INT	16	
5	INT	18	
6	INT	20	
7	INT	22	
0	DINT	24	IMAGE_NUMBER
1	DINT	28	AREA
2	DINT	32	EDGE_PIXELS
3	DINT	36	
4	DINT	40	
0	REAL	44	Х
1	REAL	48	Y
2	REAL	52	ANGLE
3	REAL	56	
4	REAL	60	

Part of default string for configuration with only an Polygon

<IMAGE_NUMBER dataType="DINT" pos="0"/> ① <POLYGON name="Polygon 1"> ②

```
<NUM_CORNERS dataType="SINT" pos="0"/> ③
<CORNERS corners="0"> ④
<X dataType="INT" pos="1"/> ⑤
<Y dataType="INT" pos="2"/> ⑥
</CORNERS> ⑦
</POLYGON> ⑧
```

- (1) Analyzed image's number, attributes dataType and pos
- (2) Start of container for Polygon, Name refers to the Polygon tool's name in the Tools tab
- (3) Number of corners used for this Polygon tool
- (4) Number 0 to 15 gives the properties of a single corner. The index of this corner is the order in which the polygon corner was added when the polygon was drawn
- (5) Polygon corner coordinate (x), "pixels" or "mm"
- 6 Polygon corner coordinate (y), "pixels" or "mm"
- ⑦ End of tag for corners
- (8) End of container for Polygon

Attribute dataType	Casts to the specified datatype. When using EtherNet/IP the at- tribute dataType specifies the dataType section in the selected assembly. The attribute dataType can be SINT, INT, DINT or REAL. For more details about dataType and pos see table in Sec- tion 7.3.2, "Attributes" (page 65).
Attribute pos	Used by EtherNet/IP to determine a position in the dataType section in the selected assembly. The first position number of the dataType section is 0. The range of the attribute pos depends on which assembly is used. For example if assembly 1 and dataType section SINT is selected the range of position is 8, i.e. [0, 7]. For more details about dataType and pos see table in Section 7.3.2, "Attributes" (page 65).

Therefore the value of the attributes dataType and pos together specifies which parameter in the assembly the result value should be mapped to.

Result of validating output string with only and Polygon

The validating in SOPAS Single Device will give the following result:

EtherNet/IP assembly string OK.

If the used assembly is too small the validating will give the following result:

EtherNet/IP assembly string not OK. Out of slots for data type INT

Use a larger assembly to solve this problem . Choose a larger assembly in the dialog Interfaces and I/O settings in the InspectorPI50 menu and the EtherNet/IP tab.

Result in PLC with only an Polygon

The table below describes how the Assembly 1's data structure will be populated when using the configuration example above.

Position ref (pos) from XML configuration	Data type (dataType)	Offset byte	Variable from example above
0	SINT	0	NUM_CORNERS
1	SINT	1	
2	SINT	2	
3	SINT	3	

Position ref (pos) from XML configuration	Data type (dataType)	Offset byte	Variable from example above
4	SINT	4	
5	SINT	5	
6	SINT	6	
7	SINT	7	
0	INT	8	X
1	INT	10	Y
2	INT	12	
3	INT	14	
4	INT	16	
5	INT	18	
6	INT	20	
7	INT	22	
0	DINT	24	IMAGE_NUMBER
1	DINT	28	
2	DINT	32	
3	DINT	36	
4	DINT	40	
0	REAL	44	
1	REAL	48	
2	REAL	52	
3	REAL	56	
4	REAL	60	

5.3 Control the Sensor via EtherNet/IP

The Inspector PI50 has the following EtherNet/IP characteristics:

• Device type: Communication adapter

The Inspector PI50 relies on a Scanner device to set up the communication channel. The IP address of the Inspector PI50 can be found by choosing Device Info from the **InspectorPI50** menu.

•	Assemblies	Instance no.	Size (bytes)	Comment	Assembly no.
	Output	100	4	Slim command channel	
	Input	101	36	Command channel result	
	Output	102	32	Command channel	
	Input	103	64	Small result channel	1
	Input	105	124	Medium result channel	2
	Input	107	248	Large result channel	3
	Input	109	484	Extra large result channel	4

• Minimum RPI: > 16 ms.

When retrieving inspection results via EtherNet/IP, the time between two inspections should be at least twice the RPI (Requested Packet Interval) specified for the communication channel.

With the shortest possible RPI, the highest recommended inspection rate is therefore approximately 30 Hz.

The EDS file for the Inspector PI50 can be found in the $\ensuremath{\text{Documentation}}$ folder on the $\ensuremath{\text{Inspector}}$ CD.

The Inspector PI50 has two Output assemblies that can be used for controlling the Inspector PI50. To do this the connection has to be set first, see Operating Instructions for Inspector PI50.

The slim command channel assembly (instance no. 100) is used for controlling the Inspector PI50 in the following ways:

- Select reference object
- Image trig

The command channel assembly (instance no. 102) is also used for controlling the Inspector PI50. With this assembly you have access to all functions in the command channel, see Section A.2, "*Command descriptions*" (page 68).

The two output assemblies are described in detail, see Section 5.3.6, "Assemblies Command Channel" (page 33).

5.3.1 Basic Principles

The command channel has a set of basic principles:

- In order to be able to change the configuration via Ethernet/IP this must be enabled. This is done In the dialog Interfaces and I/O Settings from the InspectorPI50 menu. Check Ethernet and EtherNet/IP in the tab Interfaces. In the same dialog and tab EtherNet/IP check Allow changes via EtherNet/IP.
- It is possible to block configuration changes by deselecting the setting Allow changes via Ethernet/IP in the Ethernet/IP tab in the dialog Interfaces and I/O Settings in InspectorPI50 menu.
- Writing a parameter can typically only be done when the device is in Edit mode. Reading a parameter can be done in both Edit and Run mode.
- The commands is sent with help of output assembly 102 and the result is received with input assembly 101.
- The result for a sent command can be received at the earliest in the next PLC cycle. The PLC program will have to wait for the result of an undefined number of seconds.
- Make sure that the PLC program waits for a response with the same command and ID as the sent command. If the command response never shows up a timeout must be implemented. This is done by sending another command for example gVER.

5.3.2 Command Syntax

To send commands through the command channel use the output assembly 102. The command channel has the following syntax:

<command/> <identifier></identifier>	<arg1></arg1>	<arg2></arg2>	<arg3></arg3>	<arg4></arg4>	<arg5></arg5>	<arg6></arg6>
--------------------------------------	---------------	---------------	---------------	---------------	---------------	---------------

Replace <command> with the commands id, see Table A.3, "Command ID numbers - for EtherNet/IP and EtherCAT" (page 68).

The result of a command, sent over output assembly 102, can be received through input assembly 101. The syntax for ACK message is:

<com-< th=""><th><identi-< th=""><th><error< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<></th></error<></th></identi-<></th></com-<>	<identi-< th=""><th><error< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<></th></error<></th></identi-<>	<error< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<></th></error<>	<retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<>	<retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""></retv-<></th></retv-<></th></retv-<></th></retv-<></th></retv-<>	<retv-< th=""><th><retv-< th=""><th><retv-< th=""><th><retv-< th=""></retv-<></th></retv-<></th></retv-<></th></retv-<>	<retv-< th=""><th><retv-< th=""><th><retv-< th=""></retv-<></th></retv-<></th></retv-<>	<retv-< th=""><th><retv-< th=""></retv-<></th></retv-<>	<retv-< th=""></retv-<>
mand>	fier>	code>	al1>	al2>	al3>	al4>	al5>	al6>

The combination of a command with its parameters will either change the devices configuration or fetch information from the device. For more command examples see Section A.1, *"Command Syntax"* (page 67) and Section A.5, *"Command Examples"* (page 79).

5.3.3 Select Reference Object

There are two ways to select reference object with EtherNet/IP and command channel.

The first way to select reference object:

To select the reference object via the slim command channel, change the value of <code>select reference object</code> in the slim command channel assembly (instance no. 100). The object index that corresponds to each reference object can be found in the **Reference object** list in the **Main view**.

If the value in Select reference object does not correspond to any reference object, the Inspector PI50 will ignore the attempt to switch reference object.

The second way to select reference object:

To select reference object via command channel change to **Edit** mode, 0 0, change the value to select the reference object, 2 1 <object index> and then change back to **Run** mode 0 1 in the command channel assembly (instance no. 102). The object index that corresponds to each reference object can be found in the **Reference object** list in the **Main view**.

The time it takes to switch reference object depends on the number of inspections, inspection type, and sizes of the regions in the reference object. Typically it takes in the order of one second to switch reference object. For more information see Operating Instructions for Inspector PI50.

5.3.4 Image Trig

To enable triggering via EtherNet/IP, do the following:

- 1. Choose Interfaces and I/O Settings from the InspectorPI50 menu.
- 2. In the tab Interface choose Ethernet and EtherNet/IP in the list box.
- 3. In the Image settings tab choose Trig by EtherNet/IP.

To trigger an image acquisition via EtherNet/IP, specify that the slim command channel (instance no. 100) is to be used here and set the value of Trigger to 1. The image capture is made immediately, without any delays.

The Inspector PI50 will capture an image each time the value of Trigger is changed to 1 (i.e. rising edge). To trigger the next image caption, you must first set the value to 0.

When triggering via EtherNet/IP, the time between two image captions should be at least 4 times the RPI. This means that the maximum triggering rate via EtherNet/IP is approximately 15 Hz.

5.3.5 Input Assemblies, Result Channel

There are four input assemblies, each assembly corresponds to respective assembly in the **EtherNet/IP** tab in the **Interfaces and I/O Settings** dialog. Each assembly has four different dataType sections, SINT, INT, DINT, and REAL. Each dataType section has a different number of positions, the number of positions depends on the assembly and the dataType selected. Example: The dataType SINT in assembly 1 has 8 positions [0, 7] and the dataType REAL in assembly 4 has 44 positions [0, 43]. The contents of the assembly are defined from the **Ethernet Result Output** dialog.

Note

On the installation CD there is an excel file with templates for the four result input assemblies (file name: AssemblyMappingPI50.xls). These can be used to document the mapping between position in data structure and what is configured in the **Ethernet Result Output** dialog.

Assembly 1 - Small Result Channel

Instance ID:	103
Size:	64 bytes

Table 5.1 Input Assembly 1

Datatype	Number/ size	Offset (bytes)	Total size
SINT	8/1 byte each	0	8 bytes
INT	8/2 bytes each	8	16 bytes
DINT	5/ 4 bytes each	24	20 bytes
REAL	5/ 4 bytes each	44	20 bytes

Assembly 2 - Medium Result Channel

Instance ID:	105
Size:	124 bytes

Table 5.2Input Assembly 2

Datatype	Number/ size	Offset (bytes)	Total size
SINT	12/ 1 byte each	0	12 bytes
INT	12/ 2 bytes each	12	24 bytes
DINT	11/ 4 bytes each	36	44 bytes
REAL	11/ 4 bytes each	80	44 bytes

Assembly 3 - Large Result Channel

Instance ID:	107
Size:	248 bytes

Table 5.3Input Assembly 3

Datatype	Number/ size	Offset (bytes)	Total size
SINT	24/ 1 byte each	0	24 bytes
INT	24/ 2 bytes each	24	48 bytes
DINT	22/ 4 bytes each	72	88 bytes
REAL	22/ 4 bytes each	160	88 bytes

Assembly 4 - Extra Large Result Channel

Instance ID:	109
Size:	484 bytes

Table 5.4 Input Assembly 4

Datatype	Number/ size	Offset (bytes)	Total size
SINT	44/ 1 byte each	0	44 bytes
INT	44/ 2 bytes each	44	88 bytes
DINT	44/ 4 bytes each	132	176 bytes
REAL	44/ 4 bytes each	308	176 bytes

5.3.6 Assemblies Command Channel

The Output assembly contains two parameters that are used for selecting reference object and trigger inspections.

The value that corresponds to each reference object can be found in the **Reference object** list in the **Main view**.

Slim Command Channel

Instance ID:	100
Size:	4 bytes

Table 5.5Slim Command channel

Data	Туре	Offset (bytes)	Values
Select reference object	SINT	0	0-31: Selected reference object
Trigger	SINT	1	1: Trigger inspection. Set to 0 before triggering next inspection.
Reserved	SINT	2	
Reserved	SINT	3	

Command Channel

Instance ID:	102
Size:	32 bytes

Table 5.6 102 output, Command channel

Data	Туре	Offset (bytes)
Command	DINT	0
Identifier	DINT	4
Argument 1	DINT	8
Argument 2	DINT	12
Argument 3	DINT	16
Argument 4	DINT	20
Argument 5	DINT	24
Argument 6	DINT	28

Command Channel Result

Instance ID:	101
Size:	36 bytes

Note

If a Class 1 connection has been made to the device it is recommended to use the gVer command as a Noop (no operation) command.

Table 5.7	101 input	Command	channel	result
-----------	-----------	---------	---------	--------

Data	Туре	Offset (bytes)
Command	DINT	0
Identifier	DINT	4
Error code	DINT	8
Returnvalue 1	DINT	12
Returnvalue 2	DINT	16
Returnvalue 3	DINT	20
Returnvalue 4	DINT	24
Returnvalue 5	DINT	28

Data	Туре	Offset (bytes)
Returnvalue 6	DINT	32

EtherCAT

Introduction 6.1

The Inspector PI50 ECAT can be operated as an EtherCAT® ^aslave device in an EtherCAT network. This means that the Inspector PI50 can be con-trolled and results can be read out in an EtherCAT network. For more general information about EtherCAT see http://www.ethercat.org/.

^aEtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

The EtherCAT interface for the Inspector PI50 ECAT is always enabled and the specific settings for EtherCAT can be done in SOPAS Single Device, see Operating Instructions for Inspector PI50. The Inspector PI50 ECAT has been verified in an EtherCAT network using the TwinCAT® 2.x Master from Beckhoff, see http://www.beckhoff.com. All examples in this manual uses TwinCAT as Master.

6.2 **EtherCAT Function Overview**

The Inspector PI50 ECAT interfaces an EtherCAT network in the following way:

Inspector PI50 ECAT feature	EtherCAT mapping
Inspection result	Process data, see section Section 6.4, "Get Results via Eth- erCAT" (page 38)
Illumination trig	Process data, see section Section 6.4.4, "Illumination trig output" (page 41)
Inspection trig	Process data, see section Section 6.5.1, "Triggering of the Inspector" (page 44)
Command channel	CoE (Command over EtherCAT), see section Section 6.5.2, "Using the CoE command channel" (page 45)
Web server/Web API	EoE (Ethernet over EtherCAT), see section Section 6.6, " <i>EoE</i> - <i>Web server/Web API</i> " (page 48)
Configuration handling (up- load/download)	FoE (File access over EtherCAT), see section Section 6.7, "FoE - Configuration Handling and Firmware Down- load" (page 49)
Firmware handling (download)	FoE (File access over EtherCAT), see section Section 6.7, "FoE - Configuration Handling and Firmware Down- load" (page 49)

Table 6.1 EtherCAT function overview

How the different Inspector PI50 ECAT features are used in an EtherCAT network are described in following sections.
6.3 EtherCAT communication

6.3.1 EtherCAT Communication Specification

Feature	Specification
Communication protocol	EtherCAT protocol (ETG.1000)
Modulation method	Baseband
Transmission speed	100Mbps
Physical layer	100BASE-TX (IEEE802.3)
Connector	Two M12. X1 EtherCAT in. X2 EtherCAT out.
Communication medium	CAT5 or higher
Communication distance	Distance between nodes (slaves): 100m or less

6.3.2 EtherCAT LED:s

Figure 6.1, "EtherCAT LED on the Inspector PI50 ECAT" (page 37) shows the EtherCAT LED on the Inspector PI50 ECAT.

Figure 6.1 EtherCAT LED on the Inspector PI50 ECAT

Table 6.3 EtherCAT Run indicator LED

Color	Status	Details
Green	Off	Device in INIT mode
	Blinking	Device in PRE-OPERATIONAL mode
	Single flash	Device in SAFE-OPERATIONAL mode
	On	Device in OPERATIONAL mode

Table 6.4 EtherCAT Err indicator LED

Color	Status	Details	
Red	Off	No error	
	Blinking	General configuration error	
	Single flash	Local slave error	
	Double flash	Application watchdog timeout	
	On	Critical error	

Color	Status	Details
Green	Off	Physical link layer not established
	Flashing	Physical link layer established and data is being sent
	On	Physical link layer established

Table 6.5 EtherCAT Link/Act indicator LED for X1/X2

6.3.3 EtherCAT process data toggle indicators

For the EtherCAT process data objects (PDO:s) one toggle indicator is used for data between the Master and the Inspector (Rx Toggle bit for the RxPDO:s) and one toggle indicator for data between the Inspector and the Master (Tx toggle bit for the TxPDO:s). The Rx Toggle indicator is implemented as one single bit (toggle bit) and will toggle each time any of the RxP-DO:s have been updated, and the Tx Toggle indicator is implemented as three bits and will toggle each time any of the TxPDO:s have been updated. See Section Section 6.10, "*PDO Overview*" (page 54) for a summary of PDO:s.

The purpose of the toggle indicators is to indicate that data have been updated and that it should be read by the Master or the Inspector respectively.

6.3.4 EtherCAT cycle time

The following two conditions have to be fulfilled related to the selected EtherCAT cycle time:

- 1. Minimum EtherCAT cycle time is 0.5ms. Verified using a single Inspector PI50 in an Ether-CAT network running a typical inspection at an inspection cycle of 5Hz and using a process data size of 64bytes.
- 2. Assure that the EtherCAT cycle time is maximally one fourth of the Inspection cycle time. For example, running a fast inspection with an Inspection cycle time of 20ms (50Hz), results in a maximal EtherCAT cycle time of 20/4 = 5ms.

The EtherCAT cycle time is set by the EtherCAT Master.

6.4 Get Results via EtherCAT

The Inspector PI50 ECAT generates an inspection result every inspection cycle. The Inspection cycle time can be calculated from the **Frame rate** (Hz) found under the **Live image** in the **SOPAS GUI**. In an EtherCAT network the Inspection result is mapped to EtherCAT process data (PD) using a number of TxPDO:s (Tx Process Data Objects). Two types of result PDO:s exist, *mandatory* PDO:s and *optional* PDO:s.

6.4.1 Mandatory TxPDO:s

Five mandatory TxPDO:s are always used in the Inspector PI50 ECAT. This means that the inspection result sent to the Master in these PDO:s are always there, i.e. they cannot be deselected. The TxPDO:s used are *Status*, *Mode*, *Time Stamp*, *Early Time Stamp*, and *Image Number*. See section Section 6.10, "PDO Overview" (page 54) for a summary of TxPDO:s.

6.4.2 Optional TxPDO:s

By using the **Ethernet Result Output** dialog under **InspectorPI50ECAT** menu in **SOPAS Single Device** the user can select a set of inspection results that are output in each inspection cycle. An XML formatting string defines what inspection results to output in each inspection cycle. To output this user selectable inspection result in the EtherCAT network it is mapped to optional TxPDO:s. Depending on the total size of the inspection result selected by the XML formatting string, the EtherCAT user has to select the appropriate set of optional TxPDO:s to match the required size. That is, the size of the selected optional TxPDO:s has to be at least the size of the selected inspection result output.

There exist six different sized optional TxPDO:s that the user can select from, sizes are 16bytes, 32bytes, 64bytes, 128bytes, 256bytes, and 512bytes. Any combination of these differently sized optional TxPDO:s can be selected, but only one of the same size. This means

that the maximal size of the inspection result output selected by the XML formatting string is 16+32+64+128+256+512 = 1008 bytes. That is, it is possible to select any total size between 0 and 1008 bytes in step of 16 bytes. Note that the selection of optional TxPDO:s are done from the EtherCAT Master side.

Figure 6.2 Selecting optional TxPDO:s for the result

The order the inspection results appear in the XML formatting string is also the order that they will appear in the selected set of optional TxPDO:s. The size in bytes of the selected inspection result can be found in Section 7.3, *"Container Specific Tags"* (page 60). To ease for the PLC programmer a function block generator is available that makes the mapping between the XML formatting string and variables in a PLC program, see Section Section 6.11, *"ESI file"* (page 57).

Figure 6.3, "Mapping results into the optional TxPDO" (page 39) shows an example how the XML formatting string maps data into a selected set of optional TxPDO:s along with the mandatory TxPDO:s.

- ① Mandatory TxPDO (14 bytes)
- (2) Optional TxPDO (size set by EtherCAT master)

Figure 6.3 Mapping results into the optional TxPDO

See Section Section 6.10, "PDO Overview" (page 54) for a summary of TxPDO:s.

6.4.3 Results via EtherCAT - Work flow

Typically the following steps are done in order to map the XML formatting string specified inspection results to EtherCAT optional TxPDO:s.

Configure your inspection

Start with configuring your inspection, see Part 2, "How To" in the Operating Instructions.

Select inspection results to output

Open the dialog Ethernet Result Output under the InspectorPI50ECAT menu.

The active reference object is selected by default in the Reference object entry.

The Message settings represents the default units that will be used for inspection results.

Degrees/Radians	Choose unit for the rotation for object locator and angle for blobs.
Pixels/Millimeters	Choose if position coordinates should be sent in pixel or milli-
	meter unit. Note: The device must be calibrated for it to be pos-
	sible to use the "mm" attribute. An error message is given in the
	output string if the device is not calibrated and mm is chosen.

Note that the units can be individually changed for specific inspection results by the use of attributes to the result tag:s. All available attributes are listed in the table in section Section 7.2, "XML Formatting" (page 59).

Enter the result output formatting string in the **Formatting string for Ethernet Output** window or click the **Create example formatting string** button to create an example formatting string. Edit the string to adjust it if necessary.

Validate and find the size of the XML output string

In the **Ethernet Result Output** dialog click the **Validate output string** button. A text will now appear in the **Current output string** window that will indicate any syntax errors in the XML formatting string.

The text will also display the required size in bytes for the inspection result defined by the XML-string. That is, this is the size that the optional TxPDO:s have to match.

Below are three examples of validated output string in SOPAS Single Device when...

• The Master has selected a total size for the optional TxPDO:s that is too small. Optional TxPDO size is in this example 16bytes and the required size form the XML formatting string is 57bytes.

Error: Result string too long. Max size: 16 Size: 57

• The Master has not any selected optional TxPDO:s

Error: No PD containers selected from Master, formatting string cannot be used. Required size: 57 bytes

• The Master has not yet reported an optional TxPDO sizes yet (e.g. Master not on-line).

Warning: Master has not reported PD size yet, cannot validate formatting string size.

Note that the Master need to set the Inspector into OPERATIONAL mode in order for the optional TxPDO-size to be transferred to the Inspector.

Select the correct TxPDO size on the EtherCAT Master

Based on the reported size for the inspection result select a combination of optional TxPDO:s on the Master side that is at least equal to this size.

Example of validated output string in **SOPAS Single Device** when the TxPDO:s size is big enough to fit the XML formatting string selected inspection results.

EtherCAT binary output OK. Max size: 80 Size: 57

In the above example the 16byte and the 64byte optional TxPDO:s have been selected by the Master (totally 80bytes), and this is enough to fit the required 57bytes. Note that it also would have been sufficient to select only the 64byte optional TxPDO.

Note that the maximal size of XML formatting string inspection output is 1008bytes. If this limit is exceeded the following is displayed.

```
Error: Formatting string specifies more data than supported by the Inspector (1008 bytes). Required size: 1024 bytes
```

6.4.4 Illumination trig output

The mandatory TxPDO Status (see Section Section 6.10, "PDO Overview" (page 54)) contains one bit for Illumination trig. This bit is typically used for triggering external illumination sources controlled by the EtherCAT Master when the Inspector is not triggered by the Master.

The Illumination trig bit is a toggle bit where every toggle of the bit indicates a time point from where there is a defined time left until the exposure of the next image will start. This is outlined in Figure 6.4, "Illumination trig" (page 41).

Figure 6.4 Illumination trig

As seen in Figure 6.4, "Illumination trig" (page 41) the Inspector will trigger an EtherCAT Illumination trig that is valid for the next image at the same time as the current image starts its exposure. Note that since the EtherCAT cycle is not correlated to the inspection cycle the actual toggle of the Illumination trig bit can be delayed one or two EtherCAT cycles (depending on EtherCAT cycle time) before it reaches the Master. This means that when the Inspector initiate to send out the Illumination trig the time left until the exposure starts is the actual Inspector cycle time. In order to turn on the illumination in time before the exposure starts the user should account for the possible EtherCAT cycle delay.

Note

It is possible to read out the inspection cycle time via the CoE command channel. See Section A.2, "Command descriptions" (page 68).

6.4.5 Example Formatting Strings

The auto-generated example string will look different depending on the configuration in the selected reference object. The intention with the example string is to give an idea of the available tags and to be a good starting point for creating the best format for the application that should be solved.

Below follow some short descriptions of example strings for different configurations. For more information about the XML formatting see Chapter 7, "Result Output Formatting" (page 59).

It is possible to verify the actual size of the output result defined by the XML formatting string. This is done by validating the output string in the **Ethernet Result Output** dialog. Assign the appropriate Inspection Result PDO:s in the EtherCAT Master, see Table 6.9, "PDO overview" (page 55).

Example string for configuration with only an Object locator

<message_size/> (1) <image_number/> (2) <object_loc> (3) <decision/> (4) <score/> (5) <scale/> (6) <x/> (7) <y/> (8) <rotation/> (9) </object_loc> (10)

- ① Size of the message (bytes)
- (2) Analyzed images number
- (3) Start of container for object locator
- (4) Value for locator decision; 0=not found, 1=found
- (5) Locator score value, in percent how well of the object is found in the object locator due to match settings
- 6 Locator scale value, factor of analyzed live image compared to taught reference object
- X position of the reference point. This can be outside the image and therefore negative. Shown in "pixels" or "mm"
- (8) Y position of the reference point. This can be outside the image and therefore negative. Shown in "pixels" or "mm"
- (9) Locator rotation, in degrees or radians depending on the configured value in the Ethernet Result Output settings dialog
- 10 End of container for object locator

Result of validating output string with only an Object locator

 $\label{eq:string} Example \ of \ validated \ output \ string \ in \ \textbf{SOPAS Single Device:}$

EtherCAT binary output OK. Max size: 240 Size: 27

Example string for configuration with only an Blob

```
<MESSAGE_SIZE/> ①
<IMAGE_NUMBER/> ②
<BLOB index="0" name="Blob 1"> ③
<FOUND_BLOBS/> ④
<X/> ⑤
<Y/> ⑥
<AREA/> ⑦
<ANGLE/> ⑧
<EDGE_PIXELS/> ⑨
<EDGE_FLAG/> ⑩
</BLOB> ⑪
```

- (1) Size of the message (bytes)
- (2) Analyzed images number
- (3) Start of container for the blob tool named "Blob 1" and instruction to fetch the first (index="0") blob in accordance with the **Sort by** criteria
- (4) Number of found blobs in analyzed image
- (5) information of blob with index="0" concerning position and center of gravity (x position), in "pixels" or "mm"
- (6) information of blob with index="0" concerning position and center of gravity (y position), in "pixels" or "mm"
- ⑦ Blob (index="0") area, in "pixels"
- (8) Blob (index="0") angle value, in degrees or radians depending on the configured value in the **Ethernet Result Output** settings dialog
- (9) Blob (index="0") structure value, number of edge pixels inside the blob
- (1) Blob (index="0") edge value, 0=blob fully within ROI, 1= blob touches ROI border
- (1) End of container for blob tool

Result of validating output string with only an Blob

Example of validated output string in SOPAS Single Device:

EtherCAT binary output OK. Max size: 240 Size: 28

Example string for configuration with only an Polygon

```
<message_size/> ①
<IMAGE_NUMBER/> 2
<POLYGON name="Polygon 1"> ③
<NUM CORNERS/> ④
<CORNERS corners="0"> (5)
<X/> (6)
<Y/>
</>
</
</CORNERS> (8)
<CORNERS corners="1"> 9
<X/>
<X/>
(0)
<Y/>> (1)
</CORNERS> (12)
<CORNERS corners="2">
<X/>
<Y/>
</CORNERS>
</POLYGON> (B)
```

- () Size of the message (bytes)
- (2) Analyzed images number
- 3 Start of polygon container tag for the polygon tool named "Polygon 1"
- (4) Number of corners used for this polygon
- (5) Start of container tag for polygon corners with instruction to loop over all polygon corners
- 6 Corner position, X
- ⑦ Corner position, Y
- (8) End of container for polygon corners
- (9) Same as 5
- (1) Same as 6

- (1) Same as 7
- (12) Same as 8
- (B) End of container for polygon

Result of validating output string with only an Polygon

Example of validated output string in SOPAS Single Device:

EtherCAT binary output OK. Max size: 240 Size: 19

6.5 Control the Sensor via EtherCAT

The Inspector PI50 ECAT is controlled in an EtherCAT network in two ways.

- Triggering of the Inspector Either in process data (PD Trig) or using the Distributed Clock (DC) feature of EtherCAT (Programmable Trig).
- 2. Using the CoE command channel The available commands used for the EtherCAT CoE command channel can be found in Appendix A, "Command Channel" (page 67).

To allow changes via the command channel **Allow changes via EtherCAT** has to be checked in the tab **EtherCAT** in the dialog **Interfaces and I/O Settings**. This is enabled by default.

6.5.1 Triggering of the Inspector

In the Image settings tab under Triggering choose Triggered by EtherCAT.

An inspection can be triggered in an EtherCAT network in two ways. Either by a trigger bit in the mandatory RxPDO *Control* (PD Trig), see Section Section 6.10, "*PDO Overview*" (page 54)) or by the use of the Distributed Clock feature of EtherCAT (Programmable Trig).

Note

Note that the Inspector PI50 ECAT can still be triggered by the use of the digital input *in3* (if enabled).

PD Trig

A low-to-high transition on the Inspection Trig bit in the process data (RxPDO Control) will tell the Inspector to start an inspection cycle. Note that the PD Trig has a time resolution that is related to the used EtherCAT cycle. That is, the Trig can only occur at discrete times related to the beginning of each EtherCAT cycle. If better time resolution is required for the Trig the Programmable Trig feature should be used.

Note

Note that the Process data Trig (PD Trig) is always enabled.

Programmable Trig

With the Programmable Trig feature it is possible for the PLC programmer to set the time for the Trig to occur. The time is set with reference to the EtherCAT Distribute Clock (DC) time. DC mode of operation in the EtherCAT network has to be enabled by the Master.

The PLC programmer sets the time for the Trig to occur in the *StartTime* register, and then sets the *Activate* register. When the Trig has occurred the Activate register has to be set low, and the procedure starts over again. This means that the PLC programmer cannot program a new Trig time until the previously programmed Trig has occurred, i.e. there is no queue handling of Trig times.

Note

Note that the Process data Trig (PD Trig) is always enabled. It is not recommended to use the Programmable Trig at the same time as the PD Trig.

For more details see Section 6.8.2, "Programmable Trig" (page 52).

6.5.2 Using the CoE command channel

Basic principles:

- Writing a parameter can typically only be done when the device is in Edit mode. Reading a parameter can be done in both Edit and Run mode.
- A new command can not be sent until the previous command has been completed. It is possible to download and upload files (using FoE) though a command has not been completed.

CoE Command Syntax

The command channel uses the protocol CANopen over Ethernet (CoE), and the standard CoE Command Object is used (see ETG.1020, Command Object). The index used for the CoE object in the EtherCAT Master is 0x2000, callCommandChannel. The table below shows the used subindices for the Command Object.

Subindex	Description	Value
01	Command	Byte 0-n: Service Request Data
		A write access to the command data will execute the command
02	Status	1: Last command completed, no errors, reply there
		3: Last command completed, error, reply there
		255: Command is executing
03	Response	Byte 0: See subindex 2
		Byte 1: Unused
		2-n: Service Response Data ^a

^aSee Figure 6.6, "Subindex 3, Response" (page 47)

The syntax for the EtherCAT CoE command channel (Command, Subindex 01) is shown in Figure 6.5, "Subindex 1, Command" (page 46).

Figure 6.5 Subindex 1, Command

command

Replace *command* with the commands id, see Table A.3, "Command ID numbers - for EtherNet/IP and EtherCAT" (page 68).

identifier

Replace *identifier* with commands identifier found in Section A.2, "Command descriptions" (page 68).

• arg1-arg6

Replace *arg1-arg6* with the argument required for the selected command. Unused arguments will be ignored and is therefore not necessary to set.

CoE Response syntax

The syntax for the EtherCAT CoE command channel (Response, Subindex 03) is shown in Figure 6.6, "Subindex 3, Response" (page 47).

			MSB		LSB
			t	Byte 1 Jnused	Byte 0 Status
5	4 replyCommand 3	2	F	3yte 3	Byte 2
				3yte 5	Byte 4
9	8 identifier 7	6	J I	3yte 7	Byte 6
				3yte 9	Byte 8
13	12 errorCode 11	10	∫ B	yte 11	Byte 10
			В	yte 13	Byte 12
177	16 retVal1 15	14	∫ B	yte 15	Byte 14
			В	yte 17	Byte 16
21	20 retVal2 19	18	∫ B	yte 19	Byte 18
				yte 21	Byte 20
25	24 retVal3 23	22	∫ B	yte 23	Byte 22
	!!!!		р	yte 25	Byte 24
29	28 retVal4 27	26	∫ B	yte 27	Byte 26
			р	yte 29	Byte 28
33	32 retVal5 31	30	∫ B	yte 31	Byte 30
				yte 33	Byte 32
37	36 retVal6 35	34	∫ B	yte 35	Byte 34
			В	yte 37	Byte 36
107		20	В	yte 39	Byte 38
107	resultString	38	→		
			By	yte 107	Byte 106

Figure 6.6 Subindex 3, Response

Byte 0 in the Response message is the Status byte (see Subindex 2 in Table 6.6, "CoE Command Object - subindex" (page 45)) and can be either 1 = OK or 3 = not OK.

replyCommand

An echo of the command sent.

• identifier

An echo of the identifier sent.

errorCode

In case the command ended with an error this is the reported error code, see Section A.3, *"Error Codes"* (page 77).

- *retVal1-retVal6* The return value, if such exists for the executed command, see Section A.2, "*Command descriptions*" (page 68).
- resultString

In case the command ended with an error resultString is an ASCII description of the error.

For command examples see Section A.1, "Command Syntax" (page 67) and Section A.5, "Command Examples" (page 79).

6.6 EoE - Web server/Web API

By enabling the EtherCAT feature EoE, Web server/Web API traffic can be tunneled in the EtherCAT network instead of being routed in the Fast Ethernet interface (*Ethernet* connector). This means that you do not need to use the Fast Ethernet cable if the only usage for this cable is Web server/Web API traffic.

EoE can only be enabled or disabled in the EtherCAT Master and not in **SOPAS Single Device** or with any command in the command channel. The IP address used for EoE tunneling must not be the same as the IP address used for the Fast Ethernet interface. Further the EoE interface and the Fast Ethernet interface cannot be on the same sub-net.

Note

In this release the Web server has to run on the same computer as the EtherCAT Master runs, e.g. the PC that TwinCAT runs on. This means that it is not possible to connect a laptop computer to the Master computer and run the Web server on the laptop.

Figure 6.7, "Configuring IP address in TwinCAT System Manager for using EoE" (page 48) show an example of configuring EoE in TwinCAT System Manager.

⊕ General	EoE	
Mailbox CoE FoE FoE EoE ECE ESC Access	Virtual Ethernet Port Virtual MAC Id: Switch Port P Port P Port P Address Subnet Mask: Default Gateway: DNS Server: DNS Name:	02 01 05 10 03 e9 192.168. 0 .127 255.255.255. 0 192.168. 0 .125 Box_1_PL_50_ red

Figure 6.7 Configuring IP address in TwinCAT System Manager for using EoE

The IP address entered is the IP address used for the EoE traffic. That is, this is the IP address that the Web server should use to connect to the Inspector over EoE. Note that this is not the same IP address as the Inspector IP address used for the SOPAS connection.

The only Inspector PI50 ECAT traffic that can be tunneled via EoE is the Web server/Web API traffic, i.e. SOPAS Single device and Store images to FTP traffic only works on the Fast Ethernet interface.

Note

The fact that EoE has been disabled is not reported by TwinCAT to the Inspector PI50 ECAT. This means that the Inspector PI50 ECAT will still respond on the EoE channel.

Note

Depending on EtherCAT network settings and the Inspector configuration used, the Web server live image frame rate can be lower than the default vale of 1fps. If this happens no live image, or a sporadic live image, will be shown. Increase the **Refresh interval** to get a live image that is updated continuously.

6.6.1 Error Codes - EoE

The table below list error codes that may result from commands or configuration of the device. The error codes are valid for EoE.

Table 6.7 Error codes valid for Ec

Error code propagated to EtherCAT Master	Description
0x0	No error
0x1	Error in IP address, could be one of:
	 Trying to use the same IP address as the one already used for Fast Ethernet
	 Trying to use a broad cast address as IP address
	Trying to use 0.0.0.0
	 Trying to use the local host address, 127.0.0.1
	 Trying to use a reserved address; 240.0.0/4
0x1	Invalid subnet mask
0x1	Invalid gateway
0x1	Trying to enable DHCP which is not implemented
0x1	EtherCAT support in Inspector PI50 ECAT is not initialized. This usually points to a hard ware error
0x1	EtherCAT module internal error

Note

Due to limitations in the Inspector PI50 ECAT EtherCAT slave controller implementation, all EoE errors reported from the Inspector PI50 ECAT is mapped to an unspecified error (0x1) on the EtherCAT Master side.

6.7 FoE - Configuration Handling and Firmware Download

In the EtherCAT Master it is possible to download (to the Inspector) a *device configuration file* or a *firmware file* to the Inspector PI50 ECAT. It is also possible to upload (to the Master) a device configuration file using the FoE mechanism. To be able to do file transfers the Inspector PI50 ECAT has to be set into BOOTSTRAP mode.

Note

To be able to go into BOOTSTRAP mode the Inspector has to be in **Edit** mode. Edit mode can be set via the CoE command channel or the SOPAS GUI.

An FoE transfer can take in the range of minutes. As an example a 3.6Mbyte large file takes 90seconds when having an EtherCAT cycle time of 2ms.

Inspector PI-series

Figure 6.8 File transfers in TwinCAT System Manager

6.7.1 FoE Download (to Inspector)

To start a FoE download supply the file name and the FoE password (a 32bit integer). Factory default setting for the FoE password is "0". One FoE password is used for all types of FoE transfers. The password can be set via an EtherCAT command, see Table A.5, "Command channel - only for EtherCAT" (page 69). In TwinCAT System Manager an FoE download is started by clicking the **Download**... button in Figure 6.8, "File transfers in TwinCAT System Manager" (page 50). A file selection dialog then appears where the desired file for download is selected. After that a new dialog appears where the FoE-password must also be supplied. Note that TwinCAT has in this dialog stripped the file extension so it has to be entered back by hand.

A file downloaded with the file extension .s0 will be regarded as a firmware download, and all other file extensions will be regarded as a configuration download. If a downloaded configuration file is invalid the device will automatically be re-booted, and the last configuration saved in Flash will be used.

A device configuration file created with the **Backup** command in the Web server/Web API (see Section 3.3.5, "*Backup and Restore Configuration*" (page 17)) can be used for FoE configuration download. Vice versa, an FoE saved configuration file can be used by the Web server/Web API **Restore** command.

Note

When downloading a configuration to the Inspector, the Inspector will automatically be restarted after the configuration has been stored in flash. When downloading new FW to the Inspector the FW is stored in flash, but the user himself have to reset the Inspector in order for the new FW to be used.

6.7.2 FoE Upload (to Master)

A configuration file can be uploaded to the EtherCAT Master, i.e. saved in the file system of the EtherCAT Master. To start an upload supply the file name to use and the FoE password (same password as for downloads). In TwinCAT System Manager an FoE upload is started by clicking the **Upload...** button in Figure 6.8, "File transfers in TwinCAT System Manager" (page 50). A file selection dialog then appears where the desired file for download is selected. After that a new dialog appears where the FoE password must be supplied. Note that TwinCAT has in this dialog also stripped the file extension but the file will still be named as selected in the initial dialog.

6.7.3 FoE Error Codes

Below is a list of the used EtherCAT FoE error codes. Note that FoE is only allowed in BOOT-STRAP mode.

Table 6.8 Error codes valid for FoE

Error code propagated to EtherCAT Master	Description			
0x0000000	No error			
0x00008000	When writing the firmware file (Application, FPGA, EtherCAT) to the Inspector PI50 ECAT Flash memory an error occurred			
0x00008002	The password provided for FoE access does not match the pas word stored for FoE usage			
0x00008004	This error occurs if an FoE transfer is attempted in Run mode or if the FoE file format is wrong. The file format can be wrong due to the following reasons:			
	• Wrong file extension. Use "*.s0" for firmware files (Application, FPGA, EtherCAT)			
	• "*.s0" header indicated wrong firmware file type, i.e. not Applic- ation, FPGA, or EtherCAT			
	• Wrong product type code in the "*.s0" firmware file			
0x00080008	Inspector PI50 ECAT is not in BOOTSTRAP mode which is required for the FoE operation			
0x0000800B	FoE file checksum error. The checksum of the transferred file could not be validated on the Inspector PI50 ECAT.			

Note! If using TwinCAT the error codes are not propagated to the GUI or PLC level due to the implementation of TwinCAT.

6.8 DC - Distributed Clock (DC) features

EtherCAT Distributed Clock (DC) mode has to be enabled in the EtherCAT Master before this feature can be used.

The *Time Stamp* feature and *Programmable Trig* feature utilizes the DC feature of the EtherCAT network.

The DC features in an EtherCAT network assures that all slaves supporting DC has a common reference time. One of the DC capable slaves in the EtherCAT network holds the Reference Clock and the other DC capable slaves each holds a Local Clock to which drift and offset compensation are applied in order to align to the common Reference Clock.

Normally the Reference Clock is a 64bit value representing the offset from a Jan 1 2000, where one bit (tick) represents 1ns. A 64bit value will then give a wrap-around time of about 500years. Due to limitations in the EtherCAT Slave Controller in the Inspector this value is instead a 32bit value. Therefore the wrap-around time is about 4.2seconds in the Inspector. This has to be handled by the PLC programmer.

6.8.1 Time Stamp

The Time Stamp feature is a way to know at which DC time the image started its exposure. After the exposure of the image the inspection result will be calculated, and finally the inspection result is sent out. The inspection result will be paired with the corresponding 32bit Time Stamp value and sent out in the TxPDO *Time Stamp*. Another TxPDO, *Early Time Stamp*, will send out the time stamp value as fast as possible on the EtherCAT network. Figure 6.9, "Time Stamp and Early Time Stamp" (page 52) shows an example of this.

Figure 6.9 Time Stamp and Early Time Stamp

6.8.2 Programmable Trig

The Programmable Trig feature is a way for the user to program an EtherCAT Distributed Clock (DC) time when he wants the Inspector to be triggered. In this way the user is not bound to trigger the Inspector upon an EtherCAT cycle basis, i.e. as part of the process data (see PD Trig), instead the trigger time can freely be chosen. The Programmable Trig feature is a *single shot* feature, meaning that you actively have to set the DC time for each trigger event.

From an EtherCAT network perspective the Programmable Trig feature is implemented by using the EtherCAT Distributed Clock single shot SYNCO event.

Enable Programmable Trig

The DC feature used to implement the Programmable Trig feature has to be enabled by the Master. In TwinCAT SystemManager this is done by selecting the Inspector box and in the DC tab select the **Operation Mode DC Single Shot event**. Also make sure that the **Distributed Clock** dialog in the **Advanced Settings**... on the DC tab has the following settings:

- Operation Mode: DC Single Shot Event and Enable selected
- SYNC 0: Enable SYNC 0 SYNC 0 - Cycle Time: User Defined selected.

Programmable Trig is by default disabled in the Inspector. Programmable Trig is enabled in the **EtherCAT** tab in the **Interfaces and IO settings** dialog in the **Inspector PI50 menu** in SOPAS by checking the box **Enable Programmable Trig**.

Note

The use of the Programmable Trig feature and the Trig bit in the process data are allowed simultaneously. However it is recommended to only use one of the features in a configuration.

Using Programmable Trig

The Programmable Trig feature is programmed using the two EtherCat Slave Controller (ESC) registers StartTime (0x990) and Activate (0x981) on the Inspector. The PLC programmer accesses these registers by using the **PD0 DC Sync Activate** and **PD0 DC Sync Start** PD0:s, see Section 6.10, *"PD0 Overview"* (page 54).

Figure 6.10, "Illumination trig" (page 53) shows how the Programmable Trig feature is used. The following procedure can be used:

1. Make sure the Activate register is set to 0x0.

Illumination trig

- 2. Set the time, T1, when you want the Trig to occur in the StartTime register (0x990).
- 3. In the next EtherCAT cycle, set the Activate register (0x981) to 0x3.
- 4. When the rising edge of the Trig has occurred set the Activate register to 0x0. Go back to step "2".

Note that when the Programmable Trig occurs (the StartTime equals the Distributed Clock time) there is a delay of approximately 60µs until the exposure of the image starts, indicated as Trig to exposure delay in Figure 6.10, "Illumination trig" (page 53). This delay varies to some extent and the maximum measured delay is 90µs and the minimum delay is 50µs. If SOPAS is connected to the Inspector the delay is increased to approximately 70µs with a maximum delay of 120µs and a minimum delay of 50µs.

Note

Figure 6.10

Note that the DC time of the Inspector is kept in a 32bit register and thus have a wrap-around of approximately 4.2 seconds. This has to be handled in the PLC program.

6.9 EtherCAT related constants and variables

6.9.1 Station Alias

In an EtherCAT network, slaves are automatically assigned addresses based on their position in the network. But when the device must have a positive identification that is independent of cabling, a Station Alias is needed. For Inspector PI50 ECAT, the Station alias is configured in the EtherCAT Master and stored in the Inspector PI50 ECAT. When the Inspector PI50 ECAT is reset to factory default, the Station Alias will also be reset to its default value, but a reboot of the Inspector PI50 ECAT is needed for the default value to take effect.

The default Station Alias value is "0".

6.9.2 Vendor Id

The Vendor Id is 0x01000056 for SICK AG. The Vendor Id is available at CoE index 0x1018, subindex 1. The Vendor Id will never change.

6.9.3 Revision Number

The Revision Number is used to match the ESI-file to the EtherCAT Slave Controller firmware version. If the Revision Number in the ESI-file does not match the Revision Number in the EtherCAT Slave Controller the Master will signal an error. The Revision Number is available as a constant at CoE index 0x1018, subindex 3.

6.9.4 Serial Number

The Serial Number is the serial number of the Inspector PI50 ECAT. It can be read out as a constant at CoE address 0x1018, subindex 4.

6.9.5 Device Type

The EtherCAT device type is set to 0x0. The Device Type is available as a constant at CoE index 0x1000.

6.9.6 Manufacturer Hardware Version

The hardware version number, available as a constant at CoE index 0x1009.

6.9.7 Manufacturer Software Version

The EtherCAT Slave Controller software version, available as a constant at CoE index 0x100A.

6.10 PDO Overview

Note! When using trigged mode it is necessary to send a trig or change mode to update the content of the PDO:s.

Note! All PDO:s (Process Data Object) contain one single *PDO entry*. This means that the size of the PDO is always equal to the size of the PDO entry. Some PDO entries define bits that have different meanings. For example, the mandatory Time stamp TxPDO is four bytes and the PDO entry is also four bytes representing the time stamp only. Whereas the mandatory Status TxPDO is one byte and the PDO entry (also one byte) defines different meanings for the bits in the byte.

Interfaces

Table 6.9	PDO overview
-----------	--------------

Direc-	PDO	PDO entry - details	Size of PDO entries
tion			
	PDO Control (1 byte)"	Rx loggle Bit (bit 0)	1 bit
Master		Inspection Trig (bit 1), PD Trig	1 bit
		Bit 2-7 not used	6 bits
CAT	PDO DC Sync Activate (1 byte)	Activate (bit2-bit7 not used)	1 byte
Receive from Ether RxPDO)	PDO DC Sync Start (4 bytes)	Start Time	4 bytes
CAT	PDO Status (1 byte) ^a	Tx Toggle Bits (bit 0-2)	3 bit
Щ О		Illumination Trig (bit 3)	1 bit
PIG		All Passed (bit 4)	1 bit
ector		Not Located (bit 5)	1 bit
spe		Detail Inspection Failed (bit 6)	1 bit
E E		Bit 7 not used	1 bit
t fro	PDO Mode (1 byte) ^a	Mode	1 byte
DO)	PDO Time Stamp (4 bytes) ^a	Time Stamp	4 bytes
Tran (TxP	PDO Early Time Stamp (4 bytes)	Early Time Stamp	4 bytes
	PDO Image Number (4 bytes) ^a	Image Number	4 bytes
	PDO Sys Time (4 bytes) ^a	System Time	4 bytes
	PDO Inspection Result 16 (16 bytes)	Byte0Byte15	16 bytes
	PDO Inspection Result 32 (32 bytes)	Byte0Byte31	32 bytes
	PDO Inspection Result 64 (64 bytes)	Byte0Byte63	64 bytes
	PDO Inspection Result 128 (128 bytes)	Byte0Byte127	128 bytes
	PDO Inspection Result 256 (256 bytes)	Byte0Byte255	256 bytes
	PDO Inspection Result 512 (512 bytes)	Byte0Byte511	512 bytes

^aMandatory PDO

Rx Toggle bit

Process Data from EtherCAT Master to Inspector (RxPDO)

Detailed explanation: PDO Control

Control byte. Contains *Rx Toggle bit* and *Inspection Trig* (PD Trig). One toggle bit for all RxPDO:s. All PDO entries in Control are mandatory process data.

Toggle flag. The RX Toggle bit has to be toggled each time the RxPDO has been updated or changed. Bit 0 in the Control byte.

Inspection Trig (PD Trig)	Contains the inspection trigger. Changing the Inspection Trig-bit from 0 to 1 will trigger the Inspector PI50 ECAT. Bit 1 in the Control byte.
PDO DC Sync Activate	This is the Activate register for the Programmable Trig feature. See Section 6.8, " <i>DC</i> - <i>Distributed Clock (DC) features</i> " (page 51).
PDO DC Sync Start	This is the programmed DC StartTime for the Program- mable Trig feature. See Section 6.8, " <i>DC - Distributed</i> <i>Clock (DC) features</i> " (page 51).
Process Data from Inspector to Etl Detailed explanation:	nerCAT Master (TxPDO)
PDO Status	Status byte. Contains Tx Toggle Bits, Illumination Trig, All Pass, Not Located and Detail Inspection Failed. All PDO entries in Status are mandatory process data.
Tx Toggle bits	The three-bit word changes value each time any TxPDO has been updated. Bit 0-2 in the Status byte.
Illumination Trig	The toggling of this bit will represent an illumination trig. Illumination trig is only sent in free-running mode. To use illumination trig the External lighting has to be set in SOPAS Single Device . Check the box for External in Image settings tab under Lighting . Bit 3 in the Status byte. See Figure 6.4, "Illumination trig" (page 41) for the timing of Illumination trig.
All Passed	1= The object was located and all detailed inspection passed as well. Bit 4 in the Status byte.
Not Located	1=The object was not located or a detailed inspection was out of view. Bit 5 in the Status byte.
Detail Failed	1= The object was located but at least one of the de- tailed inspections failed. Bit 6 in the Status byte.
PDO Mode	The mode of the Inspector PI50 ECAT. 0=Run, 1=Edit. This is a mandatory PDO.
PDO Time Stamp	The Time Stamp is sent out with the corresponding in- spection result for an image. The Time Stamp represents the time when the imager started its acquisition for the inspected image. The Time Stamp is only valid if the EtherCAT DC (Distributed Clock) mode is enabled. If DC mode is not used or the Inspector is in Edit mode the Time Stamp value is undefined. This is a mandatory PDO.
PDO Early Time Stamp	Early Time Stamp carries the same information as the Time Stamp. The difference is that the Early Time Stamp is sent out as soon as possible after the start of image acquisition. That is, the Early Time Stamp is sent out before the corresponding inspection result. As with the Time Stamp, the Early Time Stamp is only defined in the EtherCAT DC mode and when the Inspector is in Run mode. This is a mandatory PDO.
PDO Sys Time	System Time in the Inspector, 32bit representation.
PDO Image Number	Contains the image number. The image number is re- started at 0 for each boot of the Inspector PI50 ECAT and each reset to factory defaults. Image number re- flects each image taken. Mandatory process data. Note

that there will be no image number if there are no refer-

ence objects in **SOPAS Single Device**. This is a mandatory PDO.

PDO Inspection Result (16...512) Choose which PDO entries to use for the inspection result defined by the XML formatting string. It is possible to choose one or more Inspection Result PDO. Each Inspection Result PDO can only be chosen once. The assignments for each Inspection Result PDO is done in the EtherCAT Master. These are optional PDO:s. The total size of the selected Inspection Result PDO:s is only updated in SOPAS Single Device when the Inspector PI50 ECAT does the transition PREOP to SAFEOP or PREOP to OP. The total size of the selected Inspection Result PDO:s is needed when validating the XML output format string in the dialog Ethernet Result Output in SOPAS Single Device.

6.11 ESI file

The ESI (EtherCAT Slave Information) file for the Inspector is located on the CD in the /documentation-folder and is named Inspector PI50 ECAT.ESI.xml. Copy the ESI-file to the location required by the EtherCAT Master.

Appendix

7

Result Output Formatting

7.1 XML Based Formatting

The formatting of the result string is defined by a formatting string written in XML. It is possible to mix XML tags and free text in the formatting string. The text parts will appear as is in the result string, whereas the XML tags will be replaced by the appropriate values. All white spaces in the formatting strings are ignored. In order to include whitespace in the result string use the tags <SPACE/>, <TAB/> and <NEWLINE/>.

The tags are either container tags or value tags. The container tags do not generate any text on their own. It is the value tags inside the container tags that generate the text. The following container tags are valid in the Inspector PI50:

Container tag	Explanation
OBJECT_LOC	Used to present values concerning the Object locator
BLOB	Used to present values for a found blob in a blob ROI. The index points out the found blob in accordance with the blob sorting order. If no index is given this is the same as index = 0 .
PIXEL_COUNTER, PATTERN, EDGE_PIXEL_COUNTER	Used to present values concerning inspections.
POLYGON	Used to present values concerning a defined Polygon
CORNERS	Container tag within the <polygon> tag for presenting values concerning the polygon corners. See example: <polygon> <corners> <x></x>, <y></y> </corners> </polygon></polygon>

The XML based formatting string is entered in the **Formatting string for Ethernet Output** part of the **Ethernet Result Output** dialog. To get a default string for the current chosen reference object click **Create default formatting string**. Click **Validate output string** to validate the formatting string. The output that will be sent over Ethernet or errors are reported in the **Current output string** part of the **Ethernet Result Output** dialog.

Note

When using binary transfer, the **Validate output string** button will only show how many bytes that will be sent for the current analyzed image and whether the formatting was correct or not.

The maximum size of the XML buffer is 7900 ASCII characters. This means it will not be possible to e.g. paste a XML string into to the input field if it's too large. For a larger configuration it might not be possible to configure as much output information as wanted due to this limitation.

7.2 XML Formatting

The content of the Ethernet output is configured using an XML-based formatting string. The available tags can be categorized into two groups:

- container tags: <OBJECT_LOC>, <POLYGON>, <BLOB>
- value tags: <X/>, <PIXELS/>, <NEWLINE/>, <TIME/>,...

The value tags are replaced with a value whereas the container tags are used to group value tags. The container tags do not generate any text on their own. It is the value tags inside the container tags that generate the text.

Attribute value must always be enclosed in quotes.

There are three integer tags (<UINT1/>, <UINT2/>, <UINT3/>) for which the values can be changed (in both Edit and Run mode) using the Command channel.

The <BLOB> container tag contains special functionality for presenting values for a certain blob. The index value specifies which blob ROI:s result to present. The index order is the order specified by the Sort by property configured on the **Tools** tab. The texts and value tags within the <BLOB> tag will be repeated once for each found blob. If only the properties of a single blob are wanted, this can be controlled with the index attribute. See Section 7.3, "Container Specific Tags" (page 60).

7.3 Container Specific Tags

All tags are listed in the table below. For each container tag, the available value tags are listed. The binary column states the used data type when using binary output format. Some parts of the formatting string, such as characters and ASCII tags, are only applicable for the ASCII format and will be ignored when using binary format, this is also stated in the binary column.

Note

The Binary column in the tables below describes how the data should be interpreted when received from the device.

Container tag	Value tag	Attrib- ute	Range	Binary	Comment
OBJECT_ LOC	X	co- ordUnit		REAL	X position of the reference point. Note that this can be outside the image and therefore negative. In "pixels" or "mm" depending on at- tribute "coordUnit" or configured value in the Ethernet Result output dialog.
	Y	co- ordUnit		REAL	Y position of the reference point. Note that this can be outside the image and therefore negative. In "pixels" or "mm" depending on at- tribute "coordUnit" or configured value in the Ethernet Result output dialog.
	ROTATION	unit	[-180, 180]	REAL	In degrees or radians depending on the configured value in the Eth- ernet Result output dialog.
	SCALE		[0.8, 1.2]	REAL	Scale factor of analyzed live image compared to taught reference object.
	SCORE		[0, 100]	REAL	Score view in percent how well of the object is found in the object locator due to match setting
	DECISION		{0, 1}	USINT	0=not found, 1=found
EDGE_		name	any string		Name attribute required if more than one Edge Pixel Counter exist

Table 7.1 Container Output String Tags

Reference Manual Inspector PI-series

Container tag	Value tag	Attrib- ute	Range	Binary	Comment
PIXEL_ COUNTER	PIXELS			UDINT	Number of found edge pixels, ex- pressed in pixels of the inspection region area. The No. of edge pixels interval in the Tools tab is specified as number of pixels within the in- spection region. If the located ob- ject is scaled, the number of pixels is adjusted to be the number of matching pixels that should have been found if the located object had the same size as the reference object.
	DECISION		{0, 1}	USINT	0=fail, 1=pass
PIXEL_ COUNTER		name	any string		Name attribute required if more than one Pixel Counter exist
	PIXELS			UDINT	Number of found pixels, expressed in pixels of the inspection region area. The No. of pixels in range inter- val in the Tools tab is specified as number of pixels within the inspec- tion region. If the located object is scaled, the number of pixels is ad- justed to be the number of match- ing pixels that should have been found if the located object had the same size as the reference object.
	DECISION		{0, 1}	USINT	0=fail, 1=pass
PATTERN		name	any string		Name attribute required if more than one Pattern inspection exists
	SCORE		[0, 100]	REAL	Pattern matching score.
	DECISION		{0, 1}	USINT	0=fail, 1=pass
POLYGON		name	any string		Name attribute required if more than one Polygon exists
	NUM_ CORNERS		[2, 16]	USINT	Number of corners used for this polygon tool.
	DECISION		[0, 2]	USINT	0=not found, 1=defect, 2 = pass
	SCORE		[0, 100]	REAL	Polygon matching score.
	NUM_ PIXELS			UDINT	Number of defect pixels inside crack detection region in polygon. Undefined for single edge tool.
	CORNER_ OUTSIDE		{0,1}	USINT	0=polygon completely inside im- age, 1=one or more polygon corner(s) are outside image. Can- not be used for single edge tool.
	DEFECT_X	co- ordUnit		REAL	Coordinate of the first found pixel that was within the defect thresholds. In "pixels" or "mm" depending on attribute "coordUnit"

Inspector PI-series

Container tag	Value tag	Attrib- ute	Range	Binary	Comment
					or configured value in the Ethernet Result output dialog. Return -1 if defect detection is not actived or no defect found. Un- defined for single edge tool.
	DEFECT_Y	co- ordUnit		REAL	Coordinate of the first found pixel that was within the defect thresholds. In "pixels" or "mm" depending on attribute "coordUnit" or configured value in the Ethernet Result output dialog. Return -1 if defect detection is not actived or no defect found. Un-
CORNERS ^a		corners	{0, 1, ,15, all}		"All" ^b iterates over all polygon corners. Number 0 to 15 gives the properties of a single corner. The index of this corner is the order in which the polygon corner was ad- ded when the polygon was drawn.
	Х	co- ordUnit	REAL	REAL ^C	Polygon corner coordinate. "pixels" or "mm" depending on attribute "coordUnit" or configured value in the Ethernet Result output dialog.
					For a polygon with two corners (single edge) the estimated corner positions are the intersection between the found edge and the left and right borders of the search region. The search region is defined by the user drawn edge and the position search parameter. See also Operating Instructions for Inspector PI50 about Single edge tool.
	Y	co- ordUnit	REAL	REAL ^C	Polygon corner coordinate. "pixels" or "mm" depending on attribute "coordUnit" or configured value in the Ethernet Result output dialog.
					For a polygon with two corners (single edge) the estimated corner positions are the intersection between the found edge and the left and right borders of the search region. The search region is defined by the user drawn edge and the position search parameter. See also Operating Instructions for Inspector PI50 about Single edge tool.

Reference Manual Inspector PI-series

Container tag	Value tag	Attrib- ute	Range	Binary	Comment
BLOB		name	any string		Name attribute required if more than one Blob tool exists. The name refers to the Blob tool's name in the tool tab
		index	[0, 15]		Index of found blob according to current blob sorting order. Index 0 is the first blob
	X	co- ordUnit		REAL	Blob center of gravity (x position). "pixels" or "mm" depending on at- tribute "coordUnit"
	Y	co- ordUnit		REAL	Blob center of gravity (y position). "pixels" or "mm" depending on at- tribute "coordUnit"
	FOUND_ BLOBS ^d			USINT	Number of found blobs.
	LIVE_ THRESHOLD_ LOW ^d			USINT	The lower threshold of the Blob tool's intensity after applying ambi- ent light compensation.
	LIVE_ THRESHOLD_ HIGH ^d			USINT	The upper threshold of the Blob tool's intensity after applying ambi- ent light compensation.
	ANGLE	unit	[0, 180]	REAL	In degrees or radians depending on attribute "unit" or configured value in the Ethernet Result output dialog.
	AREA			UDINT	Blob area (in pixels)
	EDGE_FLAG		{0, 1}	USINT	0 = blob fully within ROI, 1 = blob touches ROI border
	EDGE_PIXELS			UDINT	Structure calculation value (num- ber of edge pixels inside the found blob)

 $^{\rm a}{\rm This}$ tag must be used inside the <POLYGON> container

^bOnly available for Ethernet Raw.

 c For EtherNet/IP the position is represented as an INT value. USe the scale attribute to get more decimals d This tag must be used inside the <BLOB> container. The value are given for each Blob ROI (not for each found blob)

Note

When a tool is related to the object locator and the object locator is not found in the live image the presented results for the related tools are undefined.

7.3.1 General Tags

Table 7.2 Generic Output String Tags

Value tag	Attrib- ute	Range	Binary	Comment
MESSAGE_SIZE			UINT	 Binary format: The size of the message in bytes ASCII format: The number of characters in the message
IMAGE_NUMBER			UDINT	Analyzed image's number (Resets at power-up or device reset)
IMAGE_DECISION		[0, 3]	USINT	0=Not located, 1=Detail failed, 2=All passed 3=Not located and detail failed ^a
REF_OBJECT		[0, 31]	USINT	Reference object index
ASCII	value	[0, 255]	IGNORED	Used to send single control characters
SPACE			IGNORED	Same as <ascii value="32"></ascii>
ТАВ			IGNORED	Same as <ascii value="9"></ascii>
LAB			IGNORED	Left angular bracket, "<". Useful when generating XML-formatted output.
RAB			IGNORED	Right angular bracket, ">". Useful when generating XML-formatted output.
NEWLINE			IGNORED	Same as <ascii value="10"></ascii>
RETURN			IGNORED	Same as <ascii value="13"></ascii>
TIME	timeUnit	{s, ms}	UDINT	Current time since device boot. Restarts from zero after ~10 years (using seconds) and ~49 days (using milliseconds)
SERIALCODE			UDINT	Device serial code.
FOCUS		[0, 100]	REAL	Only valid while the device is in Edit mode. This is the focus value from the Image settings tab
TELE- GRAM_COUNTER			UINT	A counter that increments for each tele- gram sent over the result channel. Resets at power-up or device reset.
USINT	intValue	[0, 255]	USINT	If the intValue attribute is not specified the default value will be zero and the tag can be used for padding.
UINT	intValue	[0, 65535]	UINT	If the intValue attribute is not specified the default value will be zero and the tag can be used for padding.
UDINT	intValue	[0, 2 ³² -1]	UDINT	If the intValue attribute is not specified the default value will be zero and the tag can be used for padding.
UINT1	intValue	[0, 65535]	UINT	Value can be changed through the com- mand channel.
UINT2		[0, 65535]	UINT	Value can be changed through the com- mand channel.

Value tag	Attrib- ute	Range	Binary	Comment
UINT3		[0, 65535]	UINT	Value can be changed through the com- mand channel.

^aIf a tool is fixed in field of view and not relative to the object locator, the Image_decision will report the value 3 in cases when the object locator does not locate the object and the result of the unrelated tool is failed.

7.3.2 Attributes

Attributes are used to control the formatting and identification of inspections. The table below describes the formatting attributes for Inspector PI50. Some attributes can also be set, for the whole formatting string, in the **Ethernet Result Output** dialog in the **InspectorPI50** menu in the section **Message settings**. The attributes operate in a hierarchical way using inheritance. So if **Number of decimals** has been set to 3 in the **Ethernet Result Output** dialog, all REAL will be printed with 3 decimals unless they are inside a tag that states otherwise. Some attributes can also be set from the **Ethernet Result Output** dialog from the **InspectorPI50** menu in **SOPAS Single Device**, see also Section 4.2.3, "Attributes" (page 20).

Table 7.3Formatting attributes

Attribute	Range	De- fault value	Affects	Used in Binary format	Comment
index	[0, 15]	0	Blob	Yes	Index of blob according to cur- rent blob sorting order. Index 0 is the first blob.
scale	Any REAL	1.0	All values	Yes	Scales the values before they are printed. Can for example be used to express positions as integers in $1/10$ pixel units
base	{decimal, octal, hex}	decim- al	Integers	No	
timeUnit	{s, ms}	s	<time></time>	Yes	
name	any string	none	Identification of tools	Yes	
value	[0, 255]	0	<ascii></ascii>	No	
intValue	[0, 255], [0, 65535], [0, 2 ³² -1]	0	<usint>, <uint>, <ud- INT></ud- </uint></usint>	Yes	Integer value to be sent.
digits	[0, 9]	0	Integers and REAL	No	Minimum number of characters.
decimals	[0, 9]	2	REAL	No	Number of decimals.
corners	[0, 15]		<corners></corners>	Yes	"All" ^a iterates over all polygon corners. Number 0 to 15 gives the properties of a single corner. The index of this corner is the order in which the polygon corner was added when the polygon was drawn.
coordUnit	{pixels, mm}	pixels	Object locator, Blob and Poly- gon coordin- ates	Yes	Gives result coordinates in pixel or millimeter format. ^b

Inspector PI-series

Attribute	Range	De- fault value	Affects	Used in Binary format	Comment
dataType	{SINT, INT, DINT, REAL}		All values	Yes	Casts to the specified datatype. When using EtherNet/IP the at- tribute DataType specifies the dataType section in the selected assembly.
pos	[0, 43]		All values	No	Used by EtherNet/IP to determ- ine a position in the dataType section in the selected assembly. The first position number of the dataType section is 0. The range of the attribute pos depends on which assembly is used.
unit	{radians, de- grees}	de- grees	Angles	Yes	

^aOnly available for Ethernet Raw.

^bThe device must be calibrated for it to be possible to use the "mm" attribute.

Table 7.4Sizes of datatypes

Datatype	Size	Range	Encoding
USINT	1 byte	[0, 255]	а
SINT	1 byte	[-128, 127]	а
UINT	2 bytes	[0, 65535]	а
INT	2 bytes	[-32768, 32767]	а
UDINT	4 bytes	[0, 2 ³² -1]	а
DINT	4 bytes	$[-2^{31}, 2^{31}-1]$	а
REAL	4 bytes	Represented as IEEE 754 binary 32	а

^aSee Section 4.2.3, "Attributes" (page 20).

Α

Command Channel

The Command Channel is used to read and update a selected set of device parameters.

This section describes the Command Channel from a generic point of view. The Command Channel is available via several of the device interfaces: Ethernet Raw, EtherNet/IP, EtherCAT, Web API. There are differences depending on the possibilities each interface provides. The differences are described in the chapters about each interface.

It is possible to block changes via the command channel individually for each interface using a setting in the interface configuration, as described in the Operating Instructions for Inspector PI50. This makes it possible to allow changes via a PLC oriented interface while blocking changes via the Web API.

A.1 Command Syntax

The tables below describe the different command types as well as ACK messages and their syntax. The basic principle is that there are three major types of commands (sINT, gINT, and aACT) and some special commands.

Table A.1	Command syntax
-----------	----------------

Command format	Explanation
gVER	Get protocol version that is supported by the addressed device
sMOD [mode]	Set device mode (0 = Run, 1 = Edit)
gMOD	Get the current device mode from the device
sINT [identifier] [arg1] [arg2] [argN]	Set "integer" parameter in the device
gINT [identifier] [arg1]	Get "integer" parameter from the device
aACT [identifier] [arg1] [arg2] [argN]	Action commands
TRIG	Trig an image acquisition and analysis
gRES	Retrieve the latest available Ethernet Result Output string

Table A.2Command response

ACK message	Explanation
rgVER [errorCode] [protocolVersion]	Response to protocol version including the version that is supported by the device
rsMOD [errorCode] [errorMessage]	Response to set mode (Run/Edit) including error code and error message
rgMOD [errorCode] [mode] [errorMes- sage]	Response to fetch current mode (Run/Edit) including the mode, error code, and error message
rsINT [identifier] [errorCode] [errorMes- sage]	Response to set integer parameter and action com- mands including error code and error message
rgINT [identifier] [errorCode] [ret1] [ret2][retN] [errorMessage]	Response to fetch integer parameter including para- meter value, error code and error message
raACT [identifier] [errorCode] [er- rorMessage]	Response to the action command including error code and error message
rTRIG [errorCode] [errorMessage]	Response to the trig command including error code and error message

If returned errorCode is 0 no errorMessage will be shown. For explanation of errorCode and errorMessage see Section A.3, "*Error Codes*" (page 77).

A.1.1 Commands ID numbers for EtherNet/IP and EtherCAT

Table with command ID numbers to be used as replacement for the normal command strings for interfaces where strings not are possible or preferred.

Table A.3 Command ID numbers - for EtherNet/IP and EtherCAT

Description	Command	ID
Set mode	sMOD	0
Get mode	gMOD	1
Set integer	sINT	2
Get integer	gINT	3
Get version	gVER	7
Action command	aACT	8
Trig device	TRIG	9

A.2 Command descriptions

The way to configure the device through the Ethernet based command channel is based on the set of commands described above with parameters depending on what the user wants to do. See tables below with a complete list of command channel actions and functions.

The index argument in the command descriptions below refers to tool's index when configured in **SOPAS Single Device**. The index can be found in the **Tools** tab in **SOPAS Single Device**. Hold the mouse pointer over the current tool to get the index number.

Description	Com- mand	ldenti- fier	Usable in Run mode	Argu- ments	Return values	Range
Save settings in flash	aACT	1	No			-
Re-teach reference object	aACT	2	Yes, only in Run mode.	int auto- Exp		0=use expos- ure settings, 1=auto adjust
Perform calibra- tion ^a	aACT	3	No	int box- Size ^b	- int calibra- tionCover- age ^c	>0 [0,100]
Remove calibration	aACT	4	No			
Apply IP settings ^d	aACT	5	Yes	int useDH- CP		0=use manual settings, 1=use DHCP
Reset the Inspect- or ^e	aACT	6	Both in run and edit mode			

Table A.4Command channel - actions

^aIn order to run this command the device must be set to Calibration mode (sINT 20 1).

^bThe argument must be given in mm.

^cReturned value is the calibration target coverage in percent.

^dAfter the aACT 5 command has been executed the Inspector need to be restarted (e.g. using aACT 6) before the new IP settings are in use.

^eThe aACT 6 command will make the device being temporarily disconnected.

Table A.5	Command channel - only for EtherCAT
-----------	-------------------------------------

Description	Command	Identifier	Usable in Run mode	Arguments	Return val- ues	Range
Set FoE pass- word ^a	sINT	140		int old, int new		

^aThe FoE password use big endian.

Table A.6	Command	channel	functions -	Device	settings

Description	Com- mand	ldentifi- er	Usable in Run mode	Arguments	Return val- ues	Range
Set interface permission	SINT	112	Yes	int interface int permis- sion		Interface: 0=Ethernet Raw, 1=HTTP, 2=Eth- ernet/IP Permission: 1=en- able, 0=disable
Get interface permission	gINT	112	Yes	int interface	int permis- sion	Interface: 0=Ethernet Raw, 1=HTTP, 2=Eth- ernet/IP
Set device IP address ^a	sINT	120	Yes	int a, int b, int c, int d		Address format: a.b.c.d ^b
Get device IP address	gINT	120	Yes		int a, int b, int c, int d	Address format: a.b.c.d
Set device net- mask ^a	sINT	121	Yes	int a, int b, int c, int d		Address format: a.b.c.d ^b
Get device net- mask	gINT	121	Yes		int a, int b, int c, int d	Address format: a.b.c.d
Set gateway ^a	sINT	122	Yes	int a, int b, int c, int d		Address format: a.b.c.d ^b
Get gateway	gINT	122	Yes		int a, int b, int c, int d	Address format: a.b.c.d

^aIn order for the settings to take effect the aACT 5 command needs to be sent to the device

 $^{\mathrm{b}}\ensuremath{\mathsf{There}}$ should be \mathbf{no} dots in the argument

Description	Com- mand	lden- tifier	Us- able in Run mode	Arguments	Return values	Range
Get used protocol ver- sion	gVER	-	Yes		int version	3=PI50 1.0, 4=PI50 ECAT 1.0, 5=PI50 1.1
Set device mode	sMOD	-	Yes	int mode		0=Run, 1= Edit
Get device mode	gMOD	-	Yes		int mode	0=Run, 1= Edit
Trig device	TRIG	-	No ^a			-
Select reference object	sINT	1	Yes	int object		[0, 31]
Get active reference object	gINT	1	Yes		int object	[0,31]

Table A.7 Command channel functions - general

Description	Com- mand	lden- tifier	Us- able in Run mode	Arguments	Return values	Range
Get number of con- figured reference ob- jects	gINT	2	Yes	-	int object	[0,31]
Change exposure ^b	sINT	14	No	int exp*100		[10,10000]
Get exposure	gINT	14	Yes		int exp*100	[10, 10000]
Change gain	sINT	15	No	int gain		[0, 400]
Get gain	gINT	15	Yes		int gain	[0, 400]
Switch trigger mode(free-running, trig)	sINT	16	No	int mode		0=free-running, 1=trig
Get trigger mode	gINT	16	Yes		int trigMode	0=free-running, 1=trig
Change value of in- teger tags in result output (UINT1-3)	sINT	18	Yes	int index, int value		[0, 2], [0,65535]
Get value of integer tags in result output (UINT1-3)	gINT	18	Yes		int index, int value	[0, 2], [0,65535]
Get frame period time [microseconds]	gINT	19	Yes		int framePeriod	
Enter/leave calibration mode	sINT	20	No	int mode		0=normal mode, 1=calibration mode
Get calibration para- meters	gINT	20	Yes	int paramet- er	int parameterRes- ult	0=calibration/nor- mal mode ^c , 1=calibrated ^d , 2=scaling ^e , 3=ori- gin ^f , 4=rotation ^g
Set external trig delay	sINT	21	No	int type, int delay (milli- seconds*10 or ticks) ^h		[0=ms, 1=tick], [1,50000] resp [0 ticks, 200000 ticks]
Get external trig delay	gINT	21	Yes		int type, int delay (milliseconds*10 or ticks)	[0=ms, 1=tick], [1,50000] resp [0 ticks, 200000 ticks]
Set digital output delay	SINT	22	No	int outputIn- dex, int type, int delay (milli- seconds*10 or ticks)		[0,19], [0=ms, 1=tick], [(Min delay time)*10,50000] resp [0 ticks, 200000 ticks]
Get digital output delay	gINT	22	Yes	int outputIn- dex	int type, int delay (milliseconds*10 or ticks)	[0,19], [0=ms, 1=tick], [1,50000] resp [0

Inspector PI-series

Description	Com- mand	lden- tifier	Us- able in Run mode	Arguments	Return values	Range
						ticks, 200000 ticks]
Set digital output act- ive time	SINT	23	No	int outputIn- dex, int type, int time (milli- seconds*10 or ticks)		[0,19], [0=ms, 1=tick], [1,10000] resp [0 ticks, 200000 ticks]
Get digital output act- ive time	gINT	23	Yes	int outputIn- dex	int type, int time (milliseconds*10 or ticks)	[0,19], [0=ms, 1=tick], [1,10000] resp [0 ticks, 200000 ticks]

^aPossibility to trig device in Run mode available on most interfaces, but implemented differently for each interface. ^bThe exposure is expressed in ms multiplied by 100 i.e. 3.8 ms is expressed as 380

^cThe result is 0= normal mode or 1= calibration mode.

^dThe result is 0= not calibrated or 1= calibrated.

^eThe result is expressed in mm/pixel x 10000.

^fThe result is expressed in pixels for x and y.

^gThe result is expressed in degrees.

^hThe delay is expressed in ms multiplied by 10 i.e. 1.5 ms is expressed as 15

Table A.8	Command channel functions - Object locator
-----------	--

Description	Com- mand	ldenti- fier	Usable in Run mode	Argu- ments	Return values	Range
Change object locator match threshold	sINT	32	No	int threshold		[0, 100], percent
Get object locator match threshold	gINT	32	Yes		int threshold	[0, 100], percent
Change object locator rotation search mode	sINT	33	No	int mode		0=off, 1=on
Get object locator rota- tion search mode	gINT	33	Yes		int mode	0=off, 1=on
Change object locator rotation search limit	sINT	34	No	int limit		[0, 180] degrees
Get object locator rota- tion search limit	gINT	34	Yes		int limit	[0, 180] degrees
Change object locator scale search mode	sINT	35	No	int mode		0=off, 1=on
Get object locator scale search mode	gINT	35	Yes		int mode	0=off, 1=on
Change object locator robustness	SINT	36	No	int rob		0=High robustness, 1=Normal, 2=High speed

Inspector PI-series

Description	Com- mand	ldenti- fier	Usable in Run mode	Argu- ments	Return values	Range
Get object locator ro- bustness	gINT	36	Yes		int rob	0=High robustness, 1=Normal, 2=High speed
Change object locator accuracy	sINT	37	No	int acc		0=High accuracy, 1=Normal, 2=High speed
Get object locator ac- curacy	gINT	37	Yes		int acc	0=High accuracy, 1=Normal, 2=High speed
Move and rotate object locator	SINT	38	No	int x, int y, int angle		x, y = pixels, angle = degrees. Arguments are delta values as compared to the cur- rent position and angle. These can be negative
Get object locator pos- ition and rotation	gINT	38	Yes		int x, int y, int angle	x, y = pixels, angle = degrees. Return values are absolute values. These can be negative as compared to the origin

Table A.9 Command channel functions - Blob

Description	Com- mand	lden- tifier	Us- able in Run mode	Arguments	Return values	Range
Change blob intens- ity thresholds	sINT	48	No	int index, ^a int min, int max		[0, 7], [0, 255], min<=max [0, 255], min<=max
Get blob intensity thresholds	gINT	48	Yes	int index	- int min, int max	[0, 7], [0, 255], [0, 255]
Change blob area thresholds	SINT	49	No	int index, int min, int max		[0, 7], [9, 307200] pixels, min<=max, [9, 307200] pixels, min<=max
Get blob area thresholds	gINT	49	Yes	int index	- int min, int max	[0, 7], [9, 307200] pixels, [9, 307200] pixels
Change blob angle thresholds	sINT	50	No	int index, int angle, int angletoler- ance		[0, 7], [0, 180], [0, 90]
Description	Com- mand	lden- tifier	Us- able in Run mode	Arguments	Return values	Range
--	--------------	-----------------	-------------------------------	--	------------------------------------	---
Get blob angle thresholds	gINT	50	Yes	int index	- int ref, int tol	[0, 7], [0, 180], [0, 90]
Change structure criteria thresholds	sINT	53	No	int index, int min, int max		[0, 7], [0, 100000], min<=max, [0, 100000], min<=max
Get structure criter- ia thresholds	gINT	53	Yes	int index	- int min, int max	[0, 7], [0, 100000], [0, 100000]
Change blob edge strength	sINT	54	No	int index, int strength		[0, 7], [0, 100] percent
Get blob edge strength	gINT	54	Yes	int index	- int strength	[0, 7], [0, 100] percent
Change ambient light compensation mode	sINT	55	No	int index, int mode		[0, 7], 0=off, 1=on
Get ambient light compensation mode	gINT	55	Yes	int index	- int mode	[0, 7], 0=off, 1=on
Change blob search method	sINT	56	No	int index, int method		[0, 7], 0=High quality, 1=Nor- mal, 2=High speed
Get blob search method	gINT	56	Yes	int index	- int meth- od	[0, 7], 0=High quality, 1=Nor- mal, 2=High speed
Move and rotate blob locator	SINT	58	No	int index, int x, int y, int angle		[0, 7], x, y = pixels, angle = de- grees. Arguments are delta values as com- pared to the current po- sition and angle. These can be negative
Get blob ROI posi- tion and rotation	gINT	58	Yes	int index	- int x, int y, int angle	[0, 7] x, y = pixels, angle = de- grees. Return values are absolute values. These can be negative as compared to the origin.
Set number of blobs	SINT	59	No	int index int min int max		[0, 7] [0, 16] min<=max [0, 16] min<=max

Inspector PI-series

Description	Com- mand	lden- tifier	Us- able in Run mode	Arguments	Return values	Range
Get number of blobs	gINT	59	Yes	int index	- int min, int max	[0, 7] [0, 16] min<=max [0, 16] min<=max

^aThe blob index argument corresponds to the order in which the blobs are listed in the **Tools** tab in the **SOPAS Single Device**, starting with 0

Description	Com- mand	ldenti- fier	Us- able in Run mode	Arguments ^a	Return values	Range
Change polygon posi- tion search tolerance	sINT	64	No	int index, int tol		[0, 7], [1, 400] pixels for single edge [5, 100] pixels for polygon
Get polygon position search tolerance	gINT	64	Yes	int index	- int tol	[0, 7], [1, 400] pixels for single edge [5, 100] pixels for polygon
Change polygon flexib- ility search tolerance	sINT	65	No	int index, int tol		[0, 7], [0, 100] pixels
Get polygon flexibility search tolerance	gINT	65	Yes	int index	- int tol	[0, 7], [0, 100] pixels
Change polygon score threshold	sINT	66	No	int index, int threshold		[0, 7], [0, 100] pixels
Get polygon score threshold	gINT	66	Yes	int index	- int threshold	[0, 7], [0, 100] pixels
Change polygon mar- gin	sINT	67	No	int index, int margin		[0, 7], [0, 20] pixels
Get polygon margin	gINT	67	Yes	int index	- int mar- gin	[0, 7], [0, 20] pixels
Change polygon de- fect detection width	sINT	68	No	int index, int width		[0, 7], [0, 100] pixels
Get polygon defect detection width	gINT	68	Yes	int index	- int width	[0, 7], [0, 100] pixels
Change polygon de- fect intensity range thresholds	sINT	69	No	int index, int min, int max		[0, 7], [0, 255], min<=max, [0, 255], min<=max

Table A.10 Command channel functions - Polygon

Inspector PI-series

Description	Com- mand	ldenti- fier	Us- able in Run mode	Arguments ^a	Return values	Range
Get polygon defect intensity range thresholds	gINT	69	Yes	int index	- int min, int max	[0, 7], [0, 255], [0, 255]
Change polygon max defects threshold	sINT	70	No	int index, int max		[0, 7], [0, 100] pixels
Get polygon max de- fects threshold	gINT	70	Yes	int index	- int max	[0, 7], [0, 100] pixels
Change polygon de- fect detection mode	sINT	71	No	int index, int mode		[0, 7], 0=off, 1=on
Get polygon defect detection mode	gINT	71	Yes	int index	- int mode	[0, 7], 0=off, 1=on
Move polygon	SINT	72	No	int index, int x, int y		[0, 7], x, y = pixels, Argu- ments are delta val- ues. These can be negative as com- pared to the origin.
Reserved for future use	gINT	72	-	-	-	-
Move polygon corner	sINT	73	No	int corner, int delta-x, int delta-y		[0, 7], delta-x, delta-y = pixels, corner= [0- 15]
Get polygon corner	SINT	73	Yes	-	int corner, int x, int y	[0-7], x, y = pixels

^aThe polygon index argument corresponds to the order in which the polygons are listed in the **Tools** tab in the **SOPAS Single Device**, starting with 0

Description	Com- mand	ldenti- fier	Usable in Run mode	Arguments ^a	Return values	Range
Change pixel	sINT	80	No	int index,		[0, 31],
counter intensity range thresholds				int min,		[0, 255], min<=max,
				int max		[0, 255], min<=max
Get pixel counter in-	gINT	80	Yes	int index	-	[0, 31],
tensity range					int min,	[0, 255],
thresholds					int max	[0, 255]
Change No. of pixels in range thresholds	sINT	81	No	int index,		[0, 31],

Table A.11 Command channel functions - Pixel counter

Inspector PI-series

Description	Com- mand	ldenti- fier	Usable in Run mode	Arguments ^a	Return values	Range
				int min, int max		[O, ROI size ^b] pixels , min<=max, [O, ROI size ^b] pixels, min<=max
Get No. of pixels in range thresholds	gINT	81	Yes	int index	- int min, int max	[0, 31], [0, ROI size ^b] pixels, [0, ROI size ^b] pixels

^aThe index argument corresponds to the order in which the pixel counter, edge pixel counter and pattern are listed in the **Tools** tab in the **SOPAS Single Device**, starting with 0. The type of tool (pixel counter, edge pixel counter or pattern) does not matter, i.e. if two Pattern tool are listed above a Pixel counter tool, the Pixel counter tool has index 2. If a tool (pixel counter, edge pixel counter or pattern) in the beginning of the list is deleted, the following tool (pixel counter, edge pixel counter or pattern) will be updated with a new index

^bROI size is the size of the pixel counter ROI in the reference object. Value can be fetched with the command gINT 87

 Table A.12
 Command channel functions - Edge pixel counter

Description	Com- mand	ldenti- fier	Usable in Run mode	Arguments ^a	Return val- ues	Range
Change edge pixel counter edge strength	sINT	82	No	int index, int strength		[0, 31], [0, 100]
Get edge pixel counter edge strength	gINT	82	Yes	int index	- int strength	[0, 31], [0, 100]
Change No. of edge pixels thresholds	SINT	83	No	int index, int min, int max		[0, 31], [0, ROI size ^b] pixels, min<=max [0, ROI size ^b] pixels, min<=max
Get No. of edge pixels thresholds	gINT	83	Yes	int index	- int 10000*min, int 10000*max	[0, 31], [0, ROI size ^b] pixels, min<=max [0, ROI size ^b] pixels, min<=max

^aThe index argument corresponds to the order in which the pixel counter, edge pixel counter and pattern are listed in the **Tools** tab in the **SOPAS Single Device**, starting with 0. The types of the tools (pixel counter, edge pixel counter or pattern) do not matter, i.e. if two Pattern tool are listed above a Pixel counter tool, the Pixel counter tool has index 2. If a tool (pixel counter, edge pixel counter or pattern) in the beginning of the list is deleted, the following tool (pixel counter, edge pixel counter or pattern) will be updated with a new index

^bROI size is the size of the edge pixel counter ROI in the reference object. Value can be fetched with the command gINT 87

Table A.13Command channel functions - Pattern

Description	Com- mand	ldentifi- er	Usable in Run mode	Arguments ^a	Return values	Range
Change pattern posi- tion tolerance	sINT	84	No	int index, int tolerance		[0, 31], [0, 4] pixels

Description	Com- mand	ldentifi- er	Usable in Run mode	Arguments ^a	Return values	Range
Get pattern position tolerance	gINT	84	Yes	int index	- int tol	[0, 31], [0, 4] pixels
Change pattern score threshold	sINT	85	No	int index, int thr		[0, 31], [0, 100] percent
Get pattern score threshold	gINT	85	Yes	int index	- int thr	[0, 31], [0, 100] percent

^aThe index argument corresponds to the order in which the pixel counter, edge pixel counter and pattern are listed in the **Tools** tab in the **SOPAS Single Device**, starting with 0. The types of the tools (pixel counter, edge pixel counter or pattern) do not matter, i.e. if two Pattern tool are listed above a Pixel counter tool, the Pixel counter tool has index 2. If a tool (pixel counter, edge pixel counter or pattern) in the beginning of the list is deleted, the following tool (pixel counter, edge pixel counter or pattern) will be updated with a new index

The table below lists the move commands for the Pixel counter, Edge pixel counter and Pattern tools.

Description		Com	Idon	lleable	Arou	Detum	Danga
	pixel	counte	r and F	Pattern			
Table A.14	Com	mand c	hanne	l functior	ns - Commor	n commano	ds for Pixel counter, Edge

Description	Com- mand	lden- tifier	Usable in Run mode	Argu- ments ^a	Return values	Range
Move and rotate inspection	SINT	86	No	int index, int x, int y, int angle		[0, 31], x, y = pixels, angle = de- grees. Arguments are delta values. These can be neg- ative as compared to the origin.
Get inspection po- sition and rotation	gINT	86	Yes	int index	- int x, int y, int angle	[0, 31], x, y = pixels, angle = de- grees. Return values are absolute values. These can be negative as compared to the origin.
Get number of pixels in ROI, Pixel Counter and Edge Pixel Counter	gINT	87	Yes	int index	- int pixels	[0, 31], Number of pixels in the reference object's ROI

^aThe index argument corresponds to the order in which the pixel counter, edge pixel counter and pattern are listed in the **Tools** tab in the **SOPAS Single Device**, starting with 0. The types of the tools (pixel counter, edge pixel counter or pattern) do not matter, i.e. if two Pattern tool are listed above a Pixel counter tool, the Pixel counter tool has index 2. If a tool (pixel counter, edge pixel counter or pattern) in the beginning of the list is deleted, the following tool (pixel counter, edge pixel counter or pattern) will be updated with a new index

A.3 Error Codes

The tables below list error codes that may result from commands or configuration of the device. The error codes are valid for Ethernet/IP, Ethernet Raw, EtherCAT and Web Server. Both error code and an explaining text are shown when using Ethernet Raw for configuring the device through the command channel. When using EtherNet/IP for configuring the device through the command channel will only view the error code.

Table A.15Error codes - Command errors

Error code	Description
0	No error
8000	Index out of bounds, for example trying to use an image bank above 32
8001	Incorrect number of arguments, too many or too few arguments are supplied
8002	A parameter value is out of bounds, for example it was not in the allowed range as described in the command list
8003	Command with no valid identifier, for example sINT 200
8004	An invalid mode was supplied sMOD, for example sMOD 2
8005	The device is performing an operation and cannot accept new command
8006	Set commands are disabled for this interface

Table A.16 Error codes - Configuration errors

Error code	Description
0	No error
8100	Operation is not allowed in current mode
8101	The reference bank is not used on the device
8102	Operation is not allowed, for example trying sINT 20 0 when not in calibration mode
8103	Calibration mode is not enabled when trying to perform calibration or trying to remove non-existent calibration
8104	No object locator is available in current reference bank
8105	No blob tool with this index exists
8106	Polygon defect detection is not enabled
8107	No polygon with supplied index exists
8108	No pixel counter with supplied index exists
8109	No edge pixel counter with supplied index exists
8110	No pattern inspection with supplied index exists
8111	The move or rotation caused the ROI to appear outside of the FOV
8112	Trig is not activated
8113	The specified IP address was invalid, or an invalid combination of addresses was used
8113	The specified network mask was invalid
8113	The specified gateway address was invalid
8113	The combination of IP settings was invalid
8114	Calibration failed
8115	Interface not available. Only interfaces that exist in the product can be en- abled/disabled

A.4 Version information

The command channel is continually extended with new commands. The intention is to always keep the command set backwards compatible with earlier versions. This table lists the available versions and the updates between each version.

Table A.17 Command channel versions

Version	Released in	Comments
3	PI50 1.0	First official version
4	PI50 ECAT	Added possibility to move a Polygon (sINT 72, sINT/gINT 73). Added SAVE and TRIG commands. Added PI50 ECAT specific command gINT 19
5	PI50 1.1	Added commands for controlling image trig delay and output delay (sINT/gINT 21, 22, 23). Added command gRES to retrieve Ethernet Output String. TRIG made availble in Run mode on the command port.

A.5 Command Examples

A.5.1 Command Examples Ethernet Raw

Description	Command	ACK message
Switch to Run mode	sMOD 0	rsMOD 0
Switch to Edit mode	sMOD 1	rsMOD 0
Get device mode	gMOD	rgMOD 0 1
Set trigger mode to free-running	sINT 16 0	rsINT 16 0
Set trigger mode to triggered	sINT 16 1	rsINT 16 0
Get trigger mode	gINT 16	rgINT 16 0 0 – if free-running
		rgINT 16 0 1 – if triggered by Ethernet
Set defect intensity thresholds to 200-255 for polygon 2	sINT 69 2 200 255	rsINT 69 0
Get defect intensity thresholds for	gINT 69 2	rgINT 69 0 200 255 – if OK
polygon 2		rgINT 69 8107 polygon does not exist – if not OK

Table A.18	Commands Ethernet Raw - gene	eral examples
------------	------------------------------	---------------

Table A.19 Commands Ethernet Raw - device settings and actions examples

Description ^a	Command(s)	ACK message
Set device IP address	sINT 120 192 168 1 110	rsINT 120 0
Apply IP settings	aACT 5 0 ^b	raACT 5 0
Set device netmask	sINT 121 255 255 255 0	rsINT 121 0
Apply IP settings	aACT 5 0 ^b	raACT 5 0
Set device gateway (optional)	sINT 122 192 168 1 1	rsINT 122 0
Apply IP settings	aACT 5 0 ^b	raACT 5 0
Enter calibration mode	sINT 20 1	rsINT 20 0
Perform calibration	aACT 3 6	raACT 3 0 75 ^c

^aThe below examples can also be done by sending the set device IP address, set device netmask and set device gateway in a sequence and then send the aACT 5 command to activate all these settings

^bThe aACT 5 command will make the device being temporarily disconnected while the new settings are applied. After this command the new IP address will have to be used in order to connect to the devic

 $^{\rm c}\mbox{Returned}$ value is the calibration target coverage in percent

A.5.2 Command Examples EtherCAT

Example 1: Switch from Run mode to Edit mode

Command string:

 $\begin{smallmatrix} 00 & 00 & 00 & 00 & 00 & 00 & 01 & 00$

Table A.20 Command: Switch from Run mode to Edit mode

Command	Byte [0-3]	00 00 00 00	0: sMOD
Identifier	Byte [4-7]	00 00 00 00	0: -
Param1	Byte [8-11]	01 00 00 00	1: edit mode
Param2	Byte [12-15]	00 00 00 00	not used
Param3	Byte [16-19]	00 00 00 00	not used
Param4	Byte [20-23]	00 00 00 00	not used
Param5	Byte [24-27]	00 00 00 00	not used
Param6	Byte [28-31]	00 00 00 00	not used

Response string:

Table A.21	ReplyCommand: Switch from Run mode to Edit mode
------------	---

Status	Byte [0]	01	Status: OK
Unused	Byte [1]	00	not used
ReplyCommand	Byte [2-5]	00 00 00 00	0: rsM0D
Identifier	Byte [6-9]	00 00 00 00	0: -
ErrorCode	Byte [10-13]	00 00 00 00	0: no error
retVal1	Byte [14-17]	01 00 00 00	1: edit mode
retVal2	Byte [18-21]	00 00 00 00	not used
retVal3	Byte [22-25]	00 00 00 00	not used
retVal4	Byte [26-29]	00 00 00 00	not used
retVal5	Byte [30-33]	00 00 00 00 00	not used
retVal6	Byte [34-37]	00 00 00 00 00	not used
resString	Byte [38-106]	72 73 4D 4F 44	"rsM0D"

Example 2: Set triggered mode to triggered

Command string:

 $\begin{array}{c} 02 \ 00 \ 00 \ 00 \ 10 \ 00 \ 00 \ 01 \ 00 \$

Command	Byte [0-3]	02 00 00 00	2: sINT
Identifier	Byte [4-7]	10 00 00 00	16: switch to trigger mode
Param1	Byte [8-11]	01 00 00 00	1: triggered mode
Param2	Byte [12-15]	00 00 00 00	not used
Param3	Byte [16-19]	00 00 00 00	not used
Param4	Byte [20-23]	00 00 00 00	not used
Param5	Byte [24-27]	00 00 00 00	not used
Param6	Byte [28-31]	00 00 00 00	not used

Table A.22Command: Set triggered mode to triggered

Response string (if the Inspector PI50 is in Edit mode):

Status	Byte [0]	01	Status: OK
Unused	Byte [1]	00	not used
ReplyCommand	Byte [2-5]	02 00 00 00	2: rsINT
Identifier	Byte [6-9]	10 00 00 00	16: swtich trigger mode
ErrorCode	Byte [10-13]	00 00 00 00	0: no error
retVal1	Byte [14-17]	01 00 00 00	1: triggered mode
retVal2	Byte [18-21]	00 00 00 00	not used
retVal3	Byte [22-25]	00 00 00 00	not used
retVal4	Byte [26-29]	00 00 00 00	not used
retVal5	Byte [30-33]	00 00 00 00 00	not used
retVal6	Byte [34-37]	00 00 00 00 00	not used
resString	Byte [38-106]	72 73 49 4E 54	"rsINT"

Table A.23ReplyCommand: Set triggered mode to triggered (Inspector PI50 in Edit mode)

Response string (if the Inspector PI50 is in Run mode):

Status	Byte [0]	03	Status: NOK
Unused	Byte [1]	00	not used
ReplyCommand	Byte [2-5]	02 00 00 00	2: rsINT
Identifier	Byte [6-9]	10 00 00 00	16: swtich trigger mode
ErrorCode	Byte [10-13]	A4 1F 00 00	8001: Operation not allowed in Run mode
retVal1	Byte [14-17]	01 00 00 00	1: triggered mode
retVal2	Byte [18-21]	00 00 00 00	not used
retVal3	Byte [22-25]	00 00 00 00	not used
retVal4	Byte [26-29]	00 00 00 00	not used
retVal5	Byte [30-33]	00 00 00 00 00	not used
retVal6	Byte [34-37]	00 00 00 00 00	not used
resString	Byte [38-106]	72 73 49 4E 54	"rsINT"

 Table A.24
 ReplyCommand: Set triggered mode to triggered (Inspector PI50 in Run mode)

Web API

B.1 Select Reference Object in Run Mode

The operation to select reference object in Run mode require a login and consists of several steps.

- 1. Create a session cookie
- 2. Login
- 3. Select reference object
- 4. Logout

B.1.1 Create a Session Cookie

A session cookie is used to handle operations requiring login with user name and password. The session cookie is created before performing the login operation and the cookie must then be supplied in the login operation and for all following operations.

Operations

CREATE COOKIE

B.1.2 Login

A login with the user name "Maintenance" is required to change settings on the device. The password is the password stored on the device. Default password is "Inspector".

The response to the login request is an HTML page indicating a successful login.

Operations

CREATE SOCKET CONNECT TO SOCKET(<IP address>, port = 80) SEND HTTP POST REQUEST (to="/HandleConfig", data = "sopas_username=Maintenance&sopas_password=<login_password>") CLOSE SOCKET

URL template (replace items in "<>")

POST /HandleConfig HTTP/1.1\r\nHost: <IP address>\r\nConnection: Keep-Alive\r\nCookie: <Session cookie>\r\n\r\nsopas_username=Maintenance&sopas_password=<login_password>

B.1.3 Select Reference Object

Send reference object index to select reference object. The index is entered after the string "%3FrefBank%3D".

The response to the select reference object request is an HTML page with a presentation of the name of the currently selected reference object.

Note

The reference object index range is [0, 31]. Sending reference object index >32 in the command may cause the device to restart.

Operations

CREATE SOCKET

CONNECT TO SOCKET(<IP address>, port = 80)

SEND HTTP POST REQUEST (to="/ReferenceObject", data = "bankList=%3Fref-Bank%3D<reference_object_index>&applyBank=Apply") CLOSE SOCKET

URL template (replace items in "<>")

```
POST /HandleConfig HTTP/1.1\r\nHost: <IP address>\r\nContent-Type: ap-
plication/x-www-form-urlencoded\r\nConnection: Keep-Alive\r\nCookie:
<Session cookie>\r\n\r\nbankList=%3FrefBank%3D<reference_object_index>&ap-
plyBank=Apply
```

B.1.4 Logout

Logout to free resources on the device.

Operations

```
CREATE SOCKET
CONNECT TO SOCKET(<IP address>, port = 80)
SEND HTTP GET REQUEST (to="/HandleConfig?logout=1")
CLOSE SOCKET
```

URL template (replace items in "<>")

```
GET /HandleConfig?logout=1 HTTP/1.1\r\nHost: <IP address>\r\nConnection: close\r\nCookie: <Session cookie>\r\n\r\n
```

B.2 Restore Configuration

The restore configuration operation takes a device configuration created with the backup functionality and replaces the current configuration with the configuration in the backup file. The operation is a multiple step procedure with the following steps:

- 1. Create session cookie
- 2. Login
- 3. Prepare restore mode
- 4. Transfer restore file to device
- 5. Device restart

The restore operation will remove the previous configuration and replace it with a new configuration. The IP address and the chessboard calibration will not be updated by the restore operation. It is not possible to use the device for other purposes during the restore operation. The operation may take several minutes to perform and the time is partly depending on the size of the backup file.

B.2.1 Create Session Cookie

A session cookie is used to handle operations requiring login with user name and password. The session cookie is created before performing the login operation and the cookie must then be supplied in the login operation and for all following operations.

Operations

CREATE COOKIE

B.2.2 Login

A login with the user name "Maintenance" is required to change information on the device. The password is the password stored on the device. Default password is "Inspector".

Operations

```
CREATE SOCKET
CONNECT TO SOCKET(<IP address>, port = 80)
```

SEND HTTP POST REQUEST (to="/HandleConfig", data = "sopas_username=Maintenance&sopas_password=<login_password>") CLOSE SOCKET

URL template (replace items in "<>")

```
POST /HandleConfig HTTP/1.1\r\nHost: <IP address>\r\nConnection: Keep-
Alive\r\nCookie: <Session cookie>\r\n\r\nsopas_username=Mainten-
ance&sopas_password=<login_password>
```

B.2.3 Prepare Restore Mode

This operation will terminate normal device operation and set the device to focus on receiving the backup file contents.

After the completion of this step, the device is in transfer file mode. All other interaction with the device except the transfer file requests may interfere with the transfer file operation and should be avoided.

Operations

CREATE SOCKET CONNECT TO SOCKET(<IP address>, port = 80) SEND HTTP GET REQUEST (to="/SelectRestore?prepare_on") CLOSE SOCKET

URL template (replace items in "<>")

GET /SelectRestore?prepare_on HTTP/1.1\r\nHost: <IP address>\r\nConnection: Keep-alive\r\nCookie: <Session cookie>\r\n\r\n

B.2.4 Transfer Restore File to Device

During the transfer phase the contents of the backup file is transferred to the device.

Operations

```
CREATE SOCKET
CONNECT TO SOCKET(<IP address>, port = 80)
SEND HTTP POST REQUEST (to="/RestoreConfig", data=<full path to backup
file>)
CLOSE SOCKET
```

URL template (replace items in "<>")

POST /RestoreConfig HTTP/1.1\r\nContent-Length: <File size>\r\nHost: <IP address>\r\nCookie: <Session cookie>\r\nConnection: Keep-Alive\r\nContent-Type: multipart/form-data; boundary=cd07053eab074616b9c4703b70584d7dwH!aE11@?dP/K:Pd-cd07053eab074616b9c4703b70584d7d\r\nContent-Disposition: form-data; name="datafile"; filename="<full path to backup file>"\r\nContent-Type: text/plain; charset=utf-8\r\n\r\nFormatVersion=RAW01.00 <Data and more data>

B.2.5 Device Restart

When the transfer is completed, the parameters on the device are updated and the configuration is stored permanently on the flash file system. The device is then restarted.

Index

A

Activate and deactivate web interfaces, 18 Assemblies Command Channel, output, 33 Assemblies Result Channel, input, 32 Attributes

Ethernet Raw, 20 EtherNet/IP, 25 Result Output Formatting, 65

В

Backup Configuration, 17 Basic Principles Ethernet Raw, 23 EtherNet/IP, 31 Web Interface, 16 Basic principles EtherCAT, 44

С

Command channel, 67 Command Types, 67 Error codes, 77 EtherCAT, 68 EtherNet/IP, 68 Examples, 79 Functions, 68 Version information, 78 Command channel, slim, 33 **Command Syntax** Ethernet Raw, 23 EtherNet/IP, 31 Web Interface, 16 Container specific Tags, 60 Control the Sensor EtherCAT, 44 Ethernet Raw, 23 EtherNet/IP, 30 Web Interface, 16 Coordinates via Ethernet Attributes, 20 Validate output string, 59 XML based formatting, 59 XML formatting, 59 Current Reference Object, 17

D

Digital inputs and outputs, 10

Ε

Error codes, command channels, 77 EtherCAT, 36 Basic Principles, 44 Control the Sensor via EtherCAT, 44

Select Reference Object, 45 Ethernet Raw, 19 ASCII versus Binary, 19 Basic Principles, 23 Command Svntax, 23 Control the Sensor via Ethernet Raw, 23 Image Trig, 24 Port Interval, 19 Reference Object, 23 Single Port Solution, 24 TCP versus UDP, 19 EtherNet/IP, 25 Basic Principles, 31 Command Syntax, 31 Control the Sensor via EtherNet/IP, 30 Image Trig, 32 Input Assemblies Result Channel, 32 **Output Assemblies Command Channel, 33** Reference Object, 32

F

Formatting Strings, 20, 25 Ethernet Raw, 20 EtherNet/IP, 25

I

I/O Extension Box, 10
Configure the IP Address, 10
Input and Output Connections, 12
Physical network Connection, 10
Setup the I/O Extension Box, 11
Troubleshooting, 13
Image Trig
Ethernet Raw, 24
EtherNet/IP, 32

Ρ

PDO, Process Data Object, 40, 54 Port Interval Ethernet Raw, 19

R

Reference Object Ethernet Raw, 23 EtherNet/IP, 32 Web API, 83 Web Interface, 17 Restore Configuration, 17, 84 Web API, 84 Result in PLC, 26, 28, 29 Result Output Formatting, 59 Container specific Tags, 60 General Tags, 64 Results via EtherCAT, 38 Results via Ethernet Raw, 19 Results via EtherNet/IP, 25 Results via Web API, 15

Reference Manual

Inspector PI-series

S

Select Reference Object EtherCAT, 45 Setup the I/O Extension Box in SOPAS Single Device, 11 Single Port Solution Ethernet Raw, 24

Т

Troubleshooting I/O Extension Box, 13

V

Validate output string, 59 Version information, command channels, 78

W

Web API, 83 Reference Object, 83 Web Interface, 15 Basic Principles, 16 Command Syntax, 16 Control the Sensor via Web API, 16 Live Image, 15 Logged Image, 15

X

XML based formatting, 59 XML formatting, 59

Australia

Phone +61 3 9497 4100 1800 334 802 - tollfree E-Mail sales@sick.com.au

Belgium/Luxembourg

Phone +32 (0)2 466 55 66 E-Mail info@sick.be Brasil

Phone +55 11 3215-4900 E-Mail sac@sick.com.br

Canada Phone +1(952) 941-6780 1 800-325-7425 - tollfree E-Mail info@sickusa.com

Ceská Republika Phone +420 2 57 91 18 50 E-Mail sick@sick.cz

China Phone +852-2763 6966 E-Mail ghk@sick.com.hk

Danmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Deutschland Phone +49 211 5301-301 E-Mail kundenservice@sick.de España

Phone +34 93 480 31 00 E-Mail info@sick.es

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Great Britain Phone +44 (0)1727 831121 E-Mail info@sick.co.uk India

Phone +91-22-4033 8333 E-Mail info@sick-india.com

Israel Phone +972-4-999-0590 E-Mail info@sick-sensors.com

Italia Phone +39 02 27 43 41 E-Mail info@sick.it

Japan

Phone +81 (0)3 3358 1341 E-Mail support@sick.jp

Magyarország Phone +36 1 371 2680 E-Mail office@sick.hu

Nederlands Phone +31 (0)30 229 25 44 E-Mail info@sick.nl Norge

Phone +47 67 81 50 00 E-Mail austefjord@sick.no Österreich

Phone +43 (0)22 36 62 28 8-0 E-Mail office@sick.at Polska

Phone +48 22 837 40 50 E-Mail info@sick.pl România

Phone +40 356 171 120 E-Mail office@sick.ro

Russia Phone +7 495 775 05 30

E-Mail info@sick.ru Schweiz

Phone +41 41 619 29 39 E-Mail contact@sick.ch

Singapore Phone +65 6744 3732 E-Mail admin@sicksgp.com.sg

South Africa Phone +27 11 472 3733 E-Mail info@sickautomation.co.za

South Korea Phone +82-2 786 6321/4 E-Mail info@sickkorea.net

Slovenija Phone +386 (0)1-47 69 990 E-Mail office@sick.si Suomi Phone +358-9-25 15 800

E-Mail sick@sick.fi Sverige Phone +46 10 110 10 00

E-Mail info@sick.se Taiwan Phone +886 2 2375-6288

E-Mail sales@sick.com.tw **Türkiye** Phone +90 216 528 50 00

E-Mail info@sick.com.tr United Arab Emirates Phone +971 4 8865 878 E-Mail info@sick.ae

USA/Canada/México Phone +1(952) 941-6780 1 800-325-7425 - tollfree E-Mail info@sickusa.com

More representatives and agencies at www.sick.com

