Image-based code reader
LECTOR®620 Professional,
High Speed, DPM Plus

Mounting, electrical installation and license texts
Software Versions

<table>
<thead>
<tr>
<th>Software</th>
<th>Function</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device description (LECTOR620.sdd)</td>
<td>Operation and configuration of the LECTOR®620</td>
<td>From V 1.34</td>
</tr>
<tr>
<td>SOPAS ET/SOPAS SingleDevice</td>
<td>Operation and configuration software</td>
<td>From V 2.34</td>
</tr>
</tbody>
</table>

For information on startup, operation, and maintenance, see the operating instructions for the LECTOR®620.

Further information on the LECTOR®620 can be found on the internet on the LECTOR®620 product page at www.sick.com/lector62x:

- Detailed technical data in the online data sheet
- Reading area diagrams and depth of field diagrams
- Operating instructions LECTOR®620
- Overview of accessories
- Online help for SOPAS Single Device and SOPAS ET as PDF
- Configuration software SOPAS ET
- Other useful software
- Scale drawing and 3D CAD scale models in various electronic formats
- EC Declaration of Conformity
- Identification solutions product catalog
- Product information LECTOR®620

Document on request:
- Overview of command language

Copyright
SICK AG
Erwin-Sick-Str. 1
79183 Waldkirch
Germany

Trademark
Windows™ and Internet Explorer™ are trademarks or registered trade-marks of Microsoft Corporation in the USA and in other countries.
Acrobat™ Reader™ is a trademark of Adobe Systems Incorporated.

Note
USB interface
The USB interface of the device is used in industrial environments only as a service interface for temporary use (e.g. for configuration, troubleshooting). Permanent use in real operation of the system as a host interface is not intended.
Table of contents

1. **Notes on this document** .. 5
2. **Installation** ... 6
 2.1 Device structure ... 6
 2.2 Installing the reading device ... 7
 2.2.1 Scanning area ... 7
 2.2.2 Reading area diagrams .. 7
 2.2.2.1 Reading area diagram (valid for LECTOR®620 Professional and DPM Plus) 7
 2.2.2.2 Depth of field diagram for resolution 1 mm, 0.75 mm, 0.5 mm and 0.25 mm (valid for LECTOR®620 Professional and DPM Plus) ... 8
 2.2.2.3 Depth of field diagram for resolution 0.2 mm, 0.15 mm and 0.1 mm (valid for LECTOR®620 Professional and DPM Plus) ... 8
 2.2.3 Reading angle and reading distance .. 9
 2.2.4 Skew angle, dependent on application ... 9
 2.2.5 Effect of alignment on reading in motion .. 10
 2.2.6 Minimizing the influences of ambient light .. 10
 2.3 Installing the connection module .. 10
 2.4 Installing the reading pulse sensor (optional) ... 10
3. **Electrical installation** ... 11
 3.1 Overview of all interfaces and connection options ... 11
 3.2 Plug/socket pin assignment on device .. 11
 3.3 Notes on electrical installation ... 12
 3.3.1 Separate fuse optionally required ... 12
 3.3.2 Electrical safety in accordance with EN 60950-1/A11 (2009-03) .. 12
 3.3.3 Avoiding equipotential bonding currents in the cable shields ... 13
 3.4 Installation steps ... 15
 3.4.1 Connecting the cables .. 15
 3.4.2 Connecting the connection module ... 18
 3.4.3 Connecting the voltage supply ... 19
 3.4.4 Connecting the Ethernet interface or USB interface ... 19
 3.4.5 Wiring serial data interfaces .. 20
 3.4.6 Connecting the CAN interface .. 21
 3.4.7 Wiring switching inputs ... 21
 3.4.8 Wiring switching outputs ... 22
 3.4.8.1 Switching output Result 3 on LECTOR®620 ... 23
 3.4.8.2 Switching output Result 4 on LECTOR®620 ... 24
 3.4.9 Micro-SD memory card (optional) .. 24
 3.5 Wiring diagram of connection module CDB620 ... 25
 3.5.1 Voltage supply via connection module CDB620 .. 26
 3.5.2 Serial host data interface RS-232 on connection module CDB620 ... 27
 3.5.3 Serial host data interface RS-422 on connection module CDB620 ... 28
 3.5.4 CAN interface on connection module CDB620 .. 29
 3.5.5 Switching output Sensor 1 on connection module CDB620 .. 30
 3.5.6 Switching output Sensor 2 on connection module CDB620 .. 31
 3.5.7 Switching output External Input 1 on connection module CDB620 .. 32
 3.5.8 Switching output External Input 2 on connection module CDB620 .. 33
 3.5.9 Switching output Result 1 on CDB620 .. 34
 3.5.10 Switching output Result 2 on CDB620 .. 35
 3.5.11 Switching output External Output 1 on CDB620 ... 36
 3.5.12 Switching output External Output 2 on CDB620 ... 37
 3.6 Wiring diagram of connection module CDM420-0001 .. 38
 3.6.1 Voltage supply via connection module CDM420-0001 ... 40
 3.6.2 Serial host data interface RS-232 on connection module CDM420-0001 41
 3.6.3 Serial host data interface RS-422 on connection module CDM420-0001 42
Contents

3.6.4 CAN interface on connection module CDM420-0001 43
3.6.5 Switching output Sensor 1 on connection module CDM420-0001 44
3.6.6 Switching output Sensor 2 on connection module CDM420-0001 45
3.6.7 Switching output External Input 1 on connection module
CDM420-0001 ... 46
3.6.8 Switching output External Input 2 on connection module
CDM420-0001 .. 47
3.6.9 Switching output Result 1 on CDM420-0001.. 48
3.6.10 Switching output Result 2 on CDM420-0001................................. 49
3.6.11 Switching output External Output 1 on CDM420-0001.................. 50
3.6.12 Switching output External Output 2 on CDM420-0001.................. 51
4 Open source software and LICENSE TEXTS ... 52
1 Notes on this document

This document contains information on the installation and electrical installation of the LECTOR®620.

Used symbols To gain easier access, some information in this documentation is emphasized as follows:

- ![灯泡](image) This symbol points out specific features.

- ![书本](image) This symbol indicates supplementary technical documentation.

Intended use The camera-based LECTOR®620 is an intelligent sensor for the automatic, stationary decoding of codes on moving or still-standing objects.

The LECTOR®620 reads all common 1D codes (barcodes)/2D codes (stacked codes/matrix codes). Via its host interface, the LECTOR®620 transmits the reading data to a higher-level computer for further processing.

Safety information

- ![灯泡](image) Read the information on installation and electrical installation before carrying out installation and electrical installation.

- ![灯泡](image) Read the LECTOR®620 operating instructions and familiarize yourself with the device and its functions.

- ![灯泡](image) To avoid the dazzle caused by integrated illumination, do not look into the reading window.

No maintenance is required in order to ensure compliance with risk group RGO / RG 1 / laser protection class 1.
2 Installation

2.1 Device structure

1. Blind hole thread M5, 5 mm deep (4 x), to attach the LECTOR®620
2. "Ethernet" connection
3. "Power/Serial Data/CAN/I/O" connection
4. Sliding block M5, 5 mm deep (2 x)
5. Rotatable plug unit
6. Reading window
7. Function key (2 x)
8. Bar graph display
9. LED for status display (2 levels), 5 x
10. Cover (flap)
11. "USB" connection, USB interface only for temporary use (service)
12. Slot for Micro-SD memory card
13. LED for Micro-SD memory card (status display)

All dimensions in mm (inch)
2.2 Installing the reading device

2.2.1 Scanning area

Form and extent of scanning area, extent dependent on distance

![Diagram](image)

2.2.2 Reading area diagrams

The focus position of the LECTOR®620 is set to the code automatically.

- The reading area length and reading area width, as well as the minimum resolution R and depth of field must be taken into account when configuring the application.

2.2.2.1 Reading area diagram (valid for LECTOR®620 Professional and DPM Plus)

<table>
<thead>
<tr>
<th>Field of view/length in mm (inch)</th>
<th>Field of view/width in mm (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 (13.78)</td>
<td>350 (13.78)</td>
</tr>
<tr>
<td>325 (12.8)</td>
<td>325 (12.8)</td>
</tr>
<tr>
<td>300 (11.81)</td>
<td>300 (11.81)</td>
</tr>
<tr>
<td>275 (10.83)</td>
<td>275 (10.83)</td>
</tr>
<tr>
<td>250 (9.84)</td>
<td>250 (9.84)</td>
</tr>
<tr>
<td>225 (8.86)</td>
<td>225 (8.86)</td>
</tr>
<tr>
<td>200 (7.87)</td>
<td>200 (7.87)</td>
</tr>
<tr>
<td>175 (6.89)</td>
<td>175 (6.89)</td>
</tr>
<tr>
<td>150 (5.91)</td>
<td>150 (5.91)</td>
</tr>
<tr>
<td>125 (4.92)</td>
<td>125 (4.92)</td>
</tr>
<tr>
<td>100 (3.94)</td>
<td>100 (3.94)</td>
</tr>
<tr>
<td>75 (2.95)</td>
<td>75 (2.95)</td>
</tr>
<tr>
<td>50 (1.97)</td>
<td>50 (1.97)</td>
</tr>
<tr>
<td>25 (0.98)</td>
<td>25 (0.98)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Reading distance in mm (inch) R = resolution

- R = 0.90 mm (35.4 mil)
- R = 0.80 mm (31.5 mil)
- R = 0.70 mm (27.6 mil)
- R = 0.60 mm (23.6 mil)
- R = 0.50 mm (19.7 mil)
- R = 0.40 mm (15.7 mil)
- R = 0.30 mm (11.8 mil)
- R = 0.20 mm (7.9 mil)
- R = 0.10 mm (3.9 mil)
2.2.2.2 Depth of field diagram for resolution 1 mm, 0.75 mm, 0.5 mm and 0.25 mm (valid for LECTOR®620 Professional and DPM Plus)

![Depth of field diagram for resolution 1 mm, 0.75 mm, 0.5 mm and 0.25 mm](image)

2.2.2.3 Depth of field diagram for resolution 0.2 mm, 0.15 mm and 0.1 mm (valid for LECTOR®620 Professional and DPM Plus)

![Depth of field diagram for resolution 0.2 mm, 0.15 mm and 0.1 mm](image)
2.2.3 Reading angle and reading distance

![Diagram showing reading angle and readings distance](image)

Reading angle

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Permitted value (threshold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α azimuth angle (tilt)</td>
<td>0 to 360°</td>
</tr>
<tr>
<td>β angle of inclination (pitch)</td>
<td>max. ±45° (dependent on cell size and symbol size)</td>
</tr>
<tr>
<td>γ angle of rotation (skew)</td>
<td>max. ±45° (dependent on cell size and symbol size)</td>
</tr>
</tbody>
</table>

Distances

<table>
<thead>
<tr>
<th>Distance Type</th>
<th>Permitted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a reading distance</td>
<td>25 mm to 500 mm (see reading area diagrams chapter 2.2.2.1 Reading area diagram (valid for LECTOR®620 Professional and DPM Plus), page 7)</td>
</tr>
<tr>
<td>b reading range / depth of field</td>
<td>(see reading area diagram chapter 2.2.2.1 Reading area diagram (valid for LECTOR®620 Professional and DPM Plus), page 7)</td>
</tr>
</tbody>
</table>

2.2.4 Skew angle, dependent on application

- Typically tilt the LECTOR®620 20° from the perpendicular to the surface of the code to avoid disruptive reflections.

In the case of codes created on metal e.g. via dot peening, an angle of 0° (bright field illumination) or up to 45° (dark field illumination) may make sense.
2.2.5 Effect of alignment on reading in motion

Upright installation for maximum reading area width

Flat installation for maximum transport speed

2.2.6 Minimizing the influences of ambient light

During operation, the LECTOR®620's internal illumination ensures a constant, sufficient illumination of the reading area. During installation of the LECTOR®620, make sure that no extreme ambient light influences (e.g. sunlight, workplace lighting, reflection from mirrors etc.) around the LECTOR®620 dazzle the sensor. That is why the installation location should be shaded using suitable measures.

The LECTOR®620 is protected against the influence of ambient light by an integrated filter.

2.3 Installing the connection module

The installation location for the connection module (distance to LECTOR®620) depends on the interface used and the max. cable length:

- Connection via Ethernet: Distance corresponds to cable length (max. 100 m)
- Connection via AUX interface (RS-232 at a Baud rate of 57.6 kBd): Cable length max. 3 m.

For detailed information on installation and electrical installation, see the operating instructions "Connection Module CDB620" (article no.: 8012119, German/English) or "Connection Module CDB420-0001" (article no.: 8010064, German/English).

2.4 Installing the reading pulse sensor (optional)
3 Electrical installation

3.1 Overview of all interfaces and connection options

![Diagram showing electrical connections and pin assignments]

3.2 Plug/socket pin assignment on device

```
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>DC 10...30 V</td>
</tr>
<tr>
<td>3</td>
<td>CAN L</td>
</tr>
<tr>
<td>4</td>
<td>CAN H</td>
</tr>
<tr>
<td>5</td>
<td>TD+ (RS-422), Host</td>
</tr>
<tr>
<td>6</td>
<td>TD- (RS-422)</td>
</tr>
<tr>
<td>7</td>
<td>TxD (RS-232), Host</td>
</tr>
<tr>
<td>8</td>
<td>RxD (RS-232), HOST</td>
</tr>
<tr>
<td>9</td>
<td>SensGND</td>
</tr>
<tr>
<td>10</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>11</td>
<td>RD+ (RS-422), Host</td>
</tr>
<tr>
<td>12</td>
<td>RD- (RS-422)</td>
</tr>
<tr>
<td>13</td>
<td>RxVD (RS-232), Host</td>
</tr>
<tr>
<td>14</td>
<td>Result 1</td>
</tr>
<tr>
<td>15</td>
<td>Result 2</td>
</tr>
<tr>
<td>16</td>
<td>Result 3</td>
</tr>
<tr>
<td>17</td>
<td>Result 4</td>
</tr>
</tbody>
</table>

**“Power/Serial Data/CAN/I/O” connection**

Plug on LECTOR®620 (not valid for ECO variant)

```

```
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC 10...30 V</td>
</tr>
<tr>
<td>2</td>
<td>RxV (RS-232), AUX</td>
</tr>
<tr>
<td>3</td>
<td>TxD (RS-232), AUX</td>
</tr>
<tr>
<td>4</td>
<td>Sensor 2</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>RD+ (RS-422), Host</td>
</tr>
<tr>
<td>7</td>
<td>RD- (RS-422)</td>
</tr>
<tr>
<td>8</td>
<td>TxD (RS-232), HOST</td>
</tr>
<tr>
<td>9</td>
<td>CAN H</td>
</tr>
<tr>
<td>10</td>
<td>CAN L</td>
</tr>
<tr>
<td>11</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>12</td>
<td>Result 1</td>
</tr>
<tr>
<td>13</td>
<td>Result 2</td>
</tr>
<tr>
<td>14</td>
<td>Sensor 2</td>
</tr>
<tr>
<td>15</td>
<td>SensGND</td>
</tr>
</tbody>
</table>

**“Ethernet” connection**

Plug on cable e.g. no. 2055419 (2 m, 6.56 ft) and 15-pin D-Sub-HD-plug on the connection cable of the ECO variant

```

```
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC 10...30 V</td>
</tr>
<tr>
<td>2</td>
<td>RxV (RS-232), AUX</td>
</tr>
<tr>
<td>3</td>
<td>TxD (RS-232), AUX</td>
</tr>
<tr>
<td>4</td>
<td>Sensor 2</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>RD+ (RS-422), Host</td>
</tr>
<tr>
<td>7</td>
<td>RD- (RS-422)</td>
</tr>
<tr>
<td>8</td>
<td>TxD (RS-232), HOST</td>
</tr>
<tr>
<td>9</td>
<td>CAN H</td>
</tr>
<tr>
<td>10</td>
<td>CAN L</td>
</tr>
<tr>
<td>11</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>12</td>
<td>Result 1</td>
</tr>
<tr>
<td>13</td>
<td>Result 2</td>
</tr>
<tr>
<td>14</td>
<td>Sensor 2</td>
</tr>
<tr>
<td>15</td>
<td>SensGND</td>
</tr>
</tbody>
</table>

**“Serial RS-232” (Aux 1) connection**

Plug on cable e.g. no. 2014054 (2 m, 6.56 ft)

```

```
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>DC 10...30 V</td>
</tr>
<tr>
<td>3</td>
<td>CAN L</td>
</tr>
<tr>
<td>4</td>
<td>CAN H</td>
</tr>
<tr>
<td>5</td>
<td>TD+ (RS-422), Host</td>
</tr>
<tr>
<td>6</td>
<td>TD- (RS-422)</td>
</tr>
<tr>
<td>7</td>
<td>TxD (RS-232), Host</td>
</tr>
<tr>
<td>8</td>
<td>RxD (RS-232), HOST</td>
</tr>
<tr>
<td>9</td>
<td>SensGND</td>
</tr>
<tr>
<td>10</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>11</td>
<td>RD+ (RS-422), Host</td>
</tr>
<tr>
<td>12</td>
<td>RD- (RS-422)</td>
</tr>
<tr>
<td>13</td>
<td>RxVD (RS-232), Host</td>
</tr>
<tr>
<td>14</td>
<td>Result 1</td>
</tr>
<tr>
<td>15</td>
<td>Result 2</td>
</tr>
<tr>
<td>16</td>
<td>Result 3</td>
</tr>
<tr>
<td>17</td>
<td>Result 4</td>
</tr>
</tbody>
</table>

**“USB” (Aux 2, image transfer) connection**

Plug on cable e.g. no. 6036106 (2 m, 6.56 ft)

```

```
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>DC 10...30 V</td>
</tr>
<tr>
<td>3</td>
<td>CAN L</td>
</tr>
<tr>
<td>4</td>
<td>CAN H</td>
</tr>
<tr>
<td>5</td>
<td>TD+ (RS-422), Host</td>
</tr>
<tr>
<td>6</td>
<td>TD- (RS-422)</td>
</tr>
<tr>
<td>7</td>
<td>TxD (RS-232), Host</td>
</tr>
<tr>
<td>8</td>
<td>RxD (RS-232), HOST</td>
</tr>
<tr>
<td>9</td>
<td>SensGND</td>
</tr>
<tr>
<td>10</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>11</td>
<td>RD+ (RS-422), Host</td>
</tr>
<tr>
<td>12</td>
<td>RD- (RS-422)</td>
</tr>
<tr>
<td>13</td>
<td>RxVD (RS-232), Host</td>
</tr>
<tr>
<td>14</td>
<td>Result 1</td>
</tr>
<tr>
<td>15</td>
<td>Result 2</td>
</tr>
<tr>
<td>16</td>
<td>Result 3</td>
</tr>
<tr>
<td>17</td>
<td>Result 4</td>
</tr>
</tbody>
</table>
```

“Ethernet” (Aux 3, image transfer) connection

Plug on cable e.g. no. 6034414 (2 m, 6.56 ft)

```
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>DC 10...30 V</td>
</tr>
<tr>
<td>3</td>
<td>CAN L</td>
</tr>
<tr>
<td>4</td>
<td>CAN H</td>
</tr>
<tr>
<td>5</td>
<td>TD+ (RS-422), Host</td>
</tr>
<tr>
<td>6</td>
<td>TD- (RS-422)</td>
</tr>
<tr>
<td>7</td>
<td>TxD (RS-232), Host</td>
</tr>
<tr>
<td>8</td>
<td>RxD (RS-232), HOST</td>
</tr>
<tr>
<td>9</td>
<td>SensGND</td>
</tr>
<tr>
<td>10</td>
<td>Sensor 1</td>
</tr>
<tr>
<td>11</td>
<td>RD+ (RS-422), Host</td>
</tr>
<tr>
<td>12</td>
<td>RD- (RS-422)</td>
</tr>
<tr>
<td>13</td>
<td>RxVD (RS-232), Host</td>
</tr>
<tr>
<td>14</td>
<td>Result 1</td>
</tr>
<tr>
<td>15</td>
<td>Result 2</td>
</tr>
<tr>
<td>16</td>
<td>Result 3</td>
</tr>
<tr>
<td>17</td>
<td>Result 4</td>
</tr>
</tbody>
</table>
```
3.3 Notes on electrical installation

Prerequisites for protection class IP65 / IP67:
- The black cover for the memory card (optional) and USB interface must be closed and screwed on.
 The connectors must be firmly screwed on to the electrical connections of the Ethernet version.

The same applies to the EMC requirement (ESD) according to CE.

The possible cable length between the LECTOR®620 and the host computer depends on the selected physical version of the host interface and the set data transfer rate.

3.3.1 Separate fuse optionally required

If the supply voltage for the LECTOR®620 is not fed via connection module CDB620/CDM420, the LECTOR®620 must be protected with a separate fuse of max. 2.0 A T in the supplying circuit. The connection module already has a fuse (0.8 A) in the circuit after switch S1.

3.3.2 Electrical safety in accordance with EN 60950-1/A11 (2009-03)

The LECTOR®620 was designed for electrical safety in accordance with EN 60950-1 (2006-04) and EN 60950-1/A11 (2009-03). It is connected to the peripheral devices (power supply, reading pulse sensor(s), PLC, host etc.) via shielded cables. The cable shield of the data cable, for example, is on the metal housing of the LECTOR®620.

If connected peripheral devices also have a metal housing and the cable shield is also on their housing, it is assumed that all devices in the installation have the same ground potential. This is done e.g. via installation on conductive metal surfaces and correct grounding of the devices/metal surfaces in the system.

If these conditions are not met, e.g. in the case of devices within a widely distributed system, equipotential bonding currents can flow between the devices via the cable shield because of different ground potentials, and can lead to dangers.

DANGER
Risk of injury/damage from electrical current

Equipotential bonding currents between the LECTOR®620 and peripheral devices may have the following effects:
- Dangerous voltages on the metal housing e.g. of the LECTOR®620
- Incorrect functioning or destruction of the devices
- Damage/destruction to a cable shield caused by heat, and cable fires

➤ If the local, unfavorable situation does not ensure a safe grounding concept (same ground potential at all grounding points), measures as outlined in the section below must be taken.
3.3.3 Avoiding equipotential bonding currents in the cable shields

As a result of the different ground potentials of devices in a distributed system, high currents can occur in the cable shields and damage or destroy them.

The primary solution for avoiding equipotential bonding currents on the cable shields is to ensure low-impedance equipotential bonding that is able to carry currents. If this is not possible, the two solutions provided below can serve as a suggestion.

We expressly advise against the measure suggested in EN 60950 of disconnecting the cable shields. If this measure is carried out, there is no guarantee that the EMC thresholds can be observed or that the devices’ data interfaces will operate reliably.
Measures for system installations distributed over wide areas

In the case of system installations distributed over wide areas, with the correspondingly high differences in potential, we recommend the setup of local islands and the connection of these islands via commercially available optical signal conditioners. This measure results in a high degree of robustness against electromagnetic interference while at the same time meeting all requirements of EN 60950.

![Diagram](image)

The ground loop is opened by using the electro-optical signal converters between the islands. Within the local islands, a stable equipotential bonding prevents equalizing currents from occurring at the cable shields.

Measures for small system installations

For smaller installations with only small potential differences, the isolated installation of the LECTOR®620 and peripherals may be sufficient.

![Diagram](image)

Ground loops are, even in the event of large differences in the ground potential, effectively prevented. Meaning that equalizing currents cannot occur anymore via the cable shield and the metal housing.

The power supply for the LECTOR®620 and connected periphery must then also guarantee the required isolation.

In some cases, a tangible potential may arise between the isolated metal housings and the local ground potential.
3.4 Installation steps

3.4.1 Connecting the cables

Pin assignment on 17-pole M12 socket and 15-pole D-Sub-HD plug

Cable no. 2049764, 2055419, 2055420 (LECTOR®620 - CDB620/CDM420)

<table>
<thead>
<tr>
<th>Pin (17-pole)</th>
<th>Signal</th>
<th>Function</th>
<th>Pin (15-pole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>DC 10 ... 30 V</td>
<td>Supply voltage</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>RxD (Aux)</td>
<td>Aux interface (receiver)</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>TxD (Aux)</td>
<td>Aux interface (transmitter)</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>Sensor 2</td>
<td>Digital switching input</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>GND</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>RD+ (RS-422), Host</td>
<td>Host interface (receiver)</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>RD- (RS-422); RxD (RS-232), Host</td>
<td>Host interface (receiver)</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>TD+ (RS-422), Host</td>
<td>Host interface (transmitter)</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>TD- (RS-422); TxD (RS-232), Host</td>
<td>Host interface (transmitter)</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>CAN H</td>
<td>CAN bus (IN/OUT)</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>CAN L</td>
<td>CAN bus (IN/OUT)</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>Result 1</td>
<td>Digital switching output</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>Result 2</td>
<td>Digital switching output</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Sensor 1</td>
<td>Digital switching input</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>SensGND</td>
<td>Common ground of switching inputs</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Result 3*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>Result 4*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Shield</td>
<td>-</td>
</tr>
</tbody>
</table>

*only available via 17-pole M12 socket with open ends

Pin assignment on 4-pole M12 plug and on 6-pole RJ45 plug

Cable no. 6034414, 6029630, 6034415, 6030928 (LECTOR®620 - PC)

<table>
<thead>
<tr>
<th>Pin (4-pole)</th>
<th>Signal</th>
<th>Function</th>
<th>Pin (6-pole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD+</td>
<td>Transmitter+</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>TD-</td>
<td>Transmitter-</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>RD+</td>
<td>Receiver+</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>RD-</td>
<td>Receiver-</td>
<td>6</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Shield</td>
<td>-</td>
</tr>
</tbody>
</table>
Pin assignment on USB plug

<table>
<thead>
<tr>
<th>Pin (4-pole)</th>
<th>Signal</th>
<th>Function</th>
<th>Pin (4-pole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC 5 V</td>
<td>USB voltage</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Data -</td>
<td>USB</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Data +</td>
<td>USB</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>Shield</td>
<td>–</td>
</tr>
</tbody>
</table>

Cable no. 6036106 (USB connection LECTOR®620 - PC)

Pin assignment on 17-pole M12 socket and strand colors on open end

<table>
<thead>
<tr>
<th>Pin (17-pole)</th>
<th>Signal</th>
<th>Function</th>
<th>Strand color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td>brown</td>
</tr>
<tr>
<td>2</td>
<td>DC 10 ... 30 V</td>
<td>Supply voltage</td>
<td>blue</td>
</tr>
<tr>
<td>3</td>
<td>CAN L</td>
<td>CAN bus (IN/OUT)</td>
<td>white</td>
</tr>
<tr>
<td>4</td>
<td>CAN H</td>
<td>CAN bus (IN/OUT)</td>
<td>green</td>
</tr>
<tr>
<td>5</td>
<td>TD+ (RS-422)</td>
<td>Host interface (transmitter)</td>
<td>pink</td>
</tr>
<tr>
<td>6</td>
<td>TD- (RS-422); TxD (RS-232)</td>
<td>Host interface (transmitter)</td>
<td>yellow</td>
</tr>
<tr>
<td>7</td>
<td>TxD (Aux)</td>
<td>Aux interface (transmitter)</td>
<td>black</td>
</tr>
<tr>
<td>8</td>
<td>RxD (Aux)</td>
<td>Aux interface (receiver)</td>
<td>gray</td>
</tr>
<tr>
<td>9</td>
<td>SensGND</td>
<td>Common ground of switching inputs</td>
<td>red</td>
</tr>
<tr>
<td>10</td>
<td>Sensor 1</td>
<td>Digital switching input</td>
<td>purple</td>
</tr>
<tr>
<td>11</td>
<td>RD+ (RS-422)</td>
<td>Host interface (receiver)</td>
<td>grey-pink</td>
</tr>
<tr>
<td>12</td>
<td>RD- (RS-422); RxD (RS-232)</td>
<td>Host interface (receiver)</td>
<td>red-blue</td>
</tr>
<tr>
<td>13</td>
<td>Result 1</td>
<td>Digital switching output</td>
<td>white-green</td>
</tr>
<tr>
<td>14</td>
<td>Result 2</td>
<td>Digital switching output</td>
<td>brown-green</td>
</tr>
<tr>
<td>15</td>
<td>Sensor 2</td>
<td>Digital switching input</td>
<td>white-yellow</td>
</tr>
<tr>
<td>16</td>
<td>Result 3</td>
<td>Digital switching output</td>
<td>yellow-brown</td>
</tr>
<tr>
<td>17</td>
<td>Result 4</td>
<td>Digital switching output</td>
<td>white-gray</td>
</tr>
</tbody>
</table>
Technical Information

LECTOR®620

Electrical installation

Pin assignment on 5-pole M12 plug and strand colors on open end

Cable no. 6012166 (CDB620 - CDB620; CDM420 - CDM420; CAN network)

<table>
<thead>
<tr>
<th>Pin (5-pole)</th>
<th>Signal</th>
<th>Function</th>
<th>Strand color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Shield</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>DC +24 V</td>
<td>Supply voltage</td>
<td>red</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
<td>black</td>
</tr>
<tr>
<td>4</td>
<td>CAN H</td>
<td>CAN bus (IN/OUT)</td>
<td>white</td>
</tr>
<tr>
<td>5</td>
<td>CAN L</td>
<td>CAN bus (IN/OUT)</td>
<td>blue</td>
</tr>
</tbody>
</table>

Pin assignment on the 9-pole D-Sub-HD socket and strand colors on the open cable end

Cable no. 2014054 (CDB620 - PC)

<table>
<thead>
<tr>
<th>Pin (9-pole)</th>
<th>Signal Aux</th>
<th>Function</th>
<th>Strand color</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RxD (Aux)</td>
<td>Aux interface (receiver)</td>
<td>purple</td>
</tr>
<tr>
<td>3</td>
<td>TxD (Aux)</td>
<td>Aux interface (transmitter)</td>
<td>yellow</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>black</td>
</tr>
</tbody>
</table>

or

<table>
<thead>
<tr>
<th>Pin (9-pole)</th>
<th>Signal host</th>
<th>Function</th>
<th>Strand color</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>black</td>
</tr>
<tr>
<td>6</td>
<td>RD+ (RS-422/485)</td>
<td>Host interface (receiver)</td>
<td>light blue</td>
</tr>
<tr>
<td>7</td>
<td>RD- (RS-422/485); RxD (RS-232)</td>
<td>Host interface (receiver)</td>
<td>blue</td>
</tr>
<tr>
<td>8</td>
<td>TD+ (RS-422/485)</td>
<td>Host interface (transmitter)</td>
<td>light gray-turquoise</td>
</tr>
<tr>
<td>9</td>
<td>TD- (RS-422/485); TxD (RS-232)</td>
<td>Host interface (transmitter)</td>
<td>green</td>
</tr>
</tbody>
</table>
3.4.2 Connecting the connection module

Information on startup/configuration of the connection module, as well as technical data, is provided in operating instructions “Connection Module CDB620” (article no. 8012119, German/English).

Wiring diagrams see chapter 3.5 Wiring diagram of connection module CDB620, page 25 or chapter 3.6 Wiring diagram of connection module CDM420-0001, page 38.
3.4.3 Connecting the voltage supply

Connection is via the SICK connection module CDB620 (see chapter 3.5.1 Voltage supply via connection module CDB620, page 26) or CDM420 (see chapter 3.6.1 Voltage supply via connection module CDM420-0001, page 40) or in the case of wiring without a SICK connection module, using connection cable article no. 6042772 (17-pole D-Sub-HD socket and open cable end).

Power supply unit required:
- Supply voltage required: DC 10 ... 30 V (SELV functional extra-low voltage in accordance with IEC 60364-4- 41 (VDE 0100 Part 410))
- Output power: at least 3 W for LECTOR®620 / \(I_{\text{peak}} \) at least 1.5 A
- Additional output power with use of optional modules in connection module CDB620: chapter 3.4.2 Connecting the connection module, page 18

The output circuit of the power supply unit must be electrically separated from the input circuit. Electrical separation is usually created by a safety transformer in accordance with standard IEC742 (VDE0551).

Short circuit/overload protection

In order to ensure short circuit/overload protection of the incoming supply cables, the strand cross sections used must be selected and fused accordingly.

The following standards are to be observed here:
- DIN VDE 0100 (Part 430)
- DIN VDE 0298 (Part 4) / DIN VDE 0891 (Part 1)

The strand cross section for the supply voltage should be at least 0.15 mm².

3.4.4 Connecting the Ethernet interface or USB interface

1. Connect the LECTOR®620 to the PC via an Ethernet cable or USB.
2. Set up the connection using the configuration software SOPAS.

Important

The Ethernet interface of the LECTOR®620 has an Auto-MDIX function. As a result, the speed and a cross connection that may be required are configured automatically.
3.4.5 Wiring serial data interfaces

The maximum data transfer rate of the serial data interface depends on the cable length and interface type.

<table>
<thead>
<tr>
<th>Interface type</th>
<th>Transfer rate</th>
<th>Distance to the host</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>up to 19,200 Bd</td>
<td>max. 10.94 yd</td>
</tr>
<tr>
<td></td>
<td>38,400 ... 57,600 Bd</td>
<td>max. 3.28 yd</td>
</tr>
<tr>
<td></td>
<td>115,200 Bd</td>
<td>max. 2.19 yd</td>
</tr>
<tr>
<td>RS-422</td>
<td>max. 38,400 Bd</td>
<td>max. 1,312.34 yd</td>
</tr>
<tr>
<td></td>
<td>max. 115,200 Bd</td>
<td>max. 500 m</td>
</tr>
</tbody>
</table>

NOTICE

Damage to the interface module.

Incorrect wiring of the serial data interface can damage electronic components in the LECTOR®620.

- Observe the information about wiring the serial data interface.
- Check the wiring carefully before switching on the LECTOR®620.

1. Connect the serial interface of the LECTOR®620 to the host in accordance with the EMC regulations using shielded cables.
 Adhere to the maximum cable lengths.
2. To prevent interference, do not lay cables parallel to power supply cables and motor lines over a longer distance, e.g. in cable channels.

The interface is connected using SICK connection module CDB620 (see chapter 3.5.2 Serial host data interface RS-232 on connection module CDB620, page 27 or chapter 3.5.3 Serial host data interface RS-422 on connection module CDB620, page 28) or CDM420 (see chapter 3.6.2 Serial host data interface RS-232 on connection module CDM420-0001, page 41 or chapter 3.6.3 Serial host data interface RS-422 on connection module CDM420-0001, page 42).

Terminating data interface RS-422

Termination can take place in connection module CDB620 or CDM420. See operating instructions “Connection Module CDB620” or “Connection Module CDM420”.

Pin assignment for the serial Aux data interface on the 15-pole D-Sub-HD plug:

- RxD = Pin 2
- TxD = Pin 3
- GND = Pin 5
3.4.6 Connecting the CAN interface

The interface is connected using SICK connection module CDB620 (see chapter 3.5.4 CAN interface on connection module CDB620, page 29) or CDM420 (see chapter 3.6.4 CAN interface on connection module CDM420-0001, page 43).

For more details on connecting and configuring the CAN interface of the LECTOR®620 for use in the CAN scanner network, see operating instructions “Anwendung der CAN-Schnittstelle von Identifikations-Sensoren” [using the CAN interface of identification sensors] (article no. 8009179, German only).

3.4.7 Wiring switching inputs

The switching inputs can be used to start and/or end the reading gate, to teach-in a match-codes or for other functions.

If the 15-pole D-Sub-HD plug is used, two switching inputs, SENSOR 1 and SENSOR 2, are available.

With extension module CMC600 in conjunction with connection module CDB620 or CDM420, two further switching inputs, EXTERNAL INPUT 1 and EXTERNAL INPUT 2, are available.

For information on wiring the switching inputs, see:

• chapter 3.5.5 Switching output Sensor 1 on connection module CDB620, page 30
• chapter 3.6.5 Switching output Sensor 1 on connection module CDM420-0001, page 44
• chapter 3.5.6 Switching output Sensor 2 on connection module CDB620, page 31
• chapter 3.6.6 Switching output Sensor 2 on connection module CDM420-0001, page 45
• chapter 3.5.7 Switching output External Input 1 on connection module CDB620, page 32
• chapter 3.6.7 Switching output External Input 1 on connection module CDM420-0001, page 46
• chapter 3.5.8 Switching output External Input 2 on connection module CDB620, page 33
• chapter 3.6.8 Switching output External Input 2 on connection module CDM420-0001, page 47
3.4.8 Wiring switching outputs

The switching outputs can be assigned various functions for outputting the result status independently of each other. If the assigned event occurs during the reading process, the corresponding switching output at the end of the reading pulse is live for the selected impulse duration.

If the 15-pole D-Sub-HD plug is used, two switching outputs, RESULT 1 and RESULT 2, are available with identical electrical properties.

With extension module CMC600 in conjunction with connection module CDB620 or CDM420, two further switching outputs, EXTERNAL OUTPUT 1 and EXTERNAL OUTPUT 2, are available.

If you use the 17-pole M12 socket with open ends, four switching outputs, RESULT 1, RESULT 2, RESULT 3 and RESULT 4 with identical electrical properties are available directly on the LECTOR®620.

Capacity loads on the switch outputs affect the on and off switching behavior. A maximum capacity of 100 nF applies as the threshold.

For information on wiring the switching outputs, see:

- chapter 3.5.9 Switching output Result 1 on CDB620, page 34
- chapter 3.6.9 Switching output Result 1 on CDM420-0001, page 48
- chapter 3.5.10 Switching output Result 2 on CDB620, page 35
- chapter 3.6.10 Switching output Result 2 on CDM420-0001, page 49
- chapter 3.4.8.1 Switching output Result 3 on LECTOR®620, page 23
- chapter 3.4.8.2 Switching output Result 4 on LECTOR®620, page 24
- chapter 3.5.11 Switching output External Output 1 on CDB620, page 36
- chapter 3.6.11 Switching output External Output 1 on CDM420-0001, page 50
- chapter 3.5.12 Switching output External Output 2 on CDB620, page 37
- chapter 3.6.12 Switching output External Output 2 on CDM420-0001, page 51
3.4.8.1 Switching output Result 3 on LECTOR®620

Wiring the "Result 3" switching output of the LECTOR®620

Ratings for "Result 3" switching output

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage V_s (default setting: no function/disabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>- Short-circuit proof + temperature protected</td>
</tr>
<tr>
<td></td>
<td>- Galvanically not separate from V_s</td>
</tr>
<tr>
<td>Electrical values</td>
<td>$0 \leq V_{out} \leq V_s$</td>
</tr>
<tr>
<td></td>
<td>Guaranteed: $V_s - 1.5 \leq V_{out} \leq V_s$ with $I_{out} \leq 100 \text{ mA}$</td>
</tr>
</tbody>
</table>

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable</th>
<th>Open end, 17-pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_s</td>
<td>2</td>
<td>blue</td>
</tr>
<tr>
<td>Result 3</td>
<td>16</td>
<td>yellow-brown</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>brown</td>
</tr>
</tbody>
</table>

1) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)

For inductive load: Install an anti-surge diode directly at the load!

Quenching circuit: Install an anti-surge diode directly at the load!
3.4.8.2 Switching output Result 4 on LECTOR®620

Electrical installation

Wiring the "Result 4" switching output of the LECTOR®620

![Wiring diagram of LECTOR®620](image)

Ratings for "Result 4" switching output

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage V_s (default setting: no function/disabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>- Short-circuit proof + temperature protected - Galvanically not separate from V_s</td>
</tr>
<tr>
<td>Electrical values</td>
<td>$0 \leq V_{in} \leq V_s$ (Guaranteed: $(V_s - 1.5 \text{ V}) \leq V_{in} \leq V_s$ with $I_{out} \leq 100 \text{ mA}$)</td>
</tr>
</tbody>
</table>

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable¹</th>
<th>Open end, 17-core</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_s</td>
<td>M12 socket, 17-pin</td>
<td></td>
</tr>
<tr>
<td>Result 4</td>
<td>17 white-gray</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>1 brown</td>
<td></td>
</tr>
</tbody>
</table>

¹ cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)

3.4.9 Micro-SD memory card (optional)

Functions of the Micro-SD memory card

- Saving of images
- Cloning of parameters

If a memory card is inserted in the LECTOR®620, the LECTOR®620 also saves all the settings on the Micro-SD memory card when you permanently save the parameters.

When you restart the LECTOR®620, these settings are automatically transferred from the Micro-SD memory card to the device. This function enables you to exchange the device easily in the event of an error. (Function available from Q3/2011.)

- Firmware update via Micro-SD card (function available from Q3/2011)

Using the memory card

To ensure reliable functioning of the memory card, only use SICK-approved types. The LECTOR®620 supports memory capacities up to max. 32 GB.
3.5 Wiring diagram of connection module CDB620

CDB620-001 connection module

- **F**: OFF/ON
- **Term CAN**: S2 OFF/ON RS
- **SGND - GND**: S3 OFF/ON Term 485
- **CMC**: NO/YES

CMC600 parameter cloning module (optional)

- **ONOFF**
- **POWER**
- **S1**
- **CMC**

S1

- **S2, S3, S4**: OFF/ON

CMC600

- **LEDs**: 20, 21, 22, 23, 24
- **Res 1, Res 2**: 30, 31, 32, 33, 34
- **Out 1, Out 2**: 40, 41, 42, 43, 44
- **RS-232**: 45, 46, 47, 48, 49
- **SCANNER**: 50, 51, 52, 53, 54
- **AUX interface**: 60, 61, 62, 63, 64

External reading clock sensor (e.g. photoelectric switch)

- **Out**: V_s
- **V_s**: DC 10 to 30 V
- **GND**: 10, 11, 12, 13, 14, 15, 16, 17, 18

LECTOR®620

- **TD-**: 16
- **TD+**: 15
- **RD-**: 14
- **RD+**: 13
- **GND**: 12
- **RS-422**: 11
- **RS-232**: 10

V_s = DC 10 to 30 V on terminal U_in = U_in* after fuse F and switch S1

* = an CMC600 is required to provide the additional switching inputs and outputs
3.5.1 Voltage supply via connection module CDB620

Wiring the power supply voltage to the CDB620 connection module

DC 10 to 30 V

CDB620

1 U_in

2 GND

5 Shield

S1: POWER

ON

OFF

S1

U_in* F

POWER

GND

V_s = DC 10 to 30 V on terminal U_in = U_in* after fuse F and switch S1

Switch S1:

ON:
Power supply voltage U_in switched to U_in* via fuse to CDB620 and LECTOR®620.
Power supply voltage U_in* additionally available on terminals 11 and 14.

OFF:
CDB620 and LECTOR®620 disconnected from power supply voltage.
Recommended position during all electrical installation work.
3.5.2 Serial host data interface RS-232 on connection module CDB620

Wiring the RS-232 data interface of the LECTOR® 620 in the CDB620 connection module

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable1</th>
<th>Cable2</th>
<th>Open end, 17 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxD</td>
<td>6</td>
<td>9</td>
<td>yellow</td>
</tr>
<tr>
<td>RxD</td>
<td>12</td>
<td>7</td>
<td>red-blue</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
<td>brown</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)
3.5.3 Serial host data interface RS-422 on connection module CDB620

Wiring the RS-422 data interface of the LECTOR®620 in the CDB620 connection module

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable 1</th>
<th>Cable 2</th>
<th>Open end, 17 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD+</td>
<td>5</td>
<td>8</td>
<td>5 pink</td>
</tr>
<tr>
<td>TD-</td>
<td>6</td>
<td>9</td>
<td>6 yellow</td>
</tr>
<tr>
<td>RD+</td>
<td>11</td>
<td>6</td>
<td>11 gray-pink</td>
</tr>
<tr>
<td>RD-</td>
<td>12</td>
<td>7</td>
<td>12 red-blue</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
<td>1 brown</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)
3.5.4 CAN interface on connection module CDB620

Wiring the CDB620 connection module with LECTOR®620 for the SICK CAN SENSOR Network

Connection of power supplies as well as of reading clock sensor e.g. to the master here not shown.

Alternative connection module:

1) cable: no. 2049764 (0.9 m/2.95 ft) or no. 2055419 (2 m/6.56 ft) or no. 2055420 (3 m/9.84 ft)
3.5.5 Switching output Sensor 1 on connection module CDB620

Wiring the "Sensor 1" switching input of the LECTOR®620 in the CDB620 connection module

a) Sensor supplied by CDB620

e.g. photo-electric switch

b) Sensor connected electrically isolated/externally supplied

e.g. photo-electric switch

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cablea)</th>
<th>Cableb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIn</td>
<td>M12 plug, 17-pin</td>
<td>D-Sub HD plug, 15-pin</td>
</tr>
<tr>
<td>Sens 1</td>
<td>S3 : SGND-GND</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S3 : SGND-GND-GND</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>ON</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>OFF</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Open end</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1)</td>
<td>2049764 (0.9 m/2.95 ft), 2055419 (2 m/6.56 ft), 2055420 (3 m/9.84 ft)</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>6042772 (3 m/9.84 ft), 6042773 (5 m/16.4 ft)</td>
<td></td>
</tr>
</tbody>
</table>

Ratings for "Sensor 1" switching input

Switching behavior: Power fed to the input starts the assigned function, e.g. start of reading clock. (default setting: logic not inverted (active high), debouncing 10 ms)

Features:
- Optodecoupled, reverse polarity protected
- Can be wired with the PNP output of a sensor

Electrical values:
Low: \(V_{in} \leq 2 \) V; \(I_{in} \leq 0.3 \) mA
High: \(6 \) V \(\leq V_{in} \leq 32 \) V; \(0.7 \) mA \(\leq I_{in} \leq 5 \) mA

Function assignment to "Sensor 1" switching input via SOPAS:
- Start of reading clock
- Stop of reading clock
- Start teach-in matchcode/start code comparison
- Increment input
- If required further functions in the future

Switch S3: SGND-GND
ON: GND of the sensor connected to GND of CDB620/LECTOR®620.
OFF: Sensor connected electrically isolated to the CDB620/LECTOR®620.
Reference potential valid for all switching inputs ("Sensor 1/2" and "In 1/2")

Connect the switch as shown in b)
3.5.6 Switching output Sensor 2 on connection module CDB620

Wiring the "Sensor 2" switching input of the LECTOR®620 in the CDB620 connection module

a) Sensor supplied by CDB620

- e.g. photo-electric switch

b) Sensor connected electrically isolated/externally supplied

- e.g. photo-electric switch

Pin and wire assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable¹</th>
<th>Cable²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vₖ</td>
<td>M12 socket, 17-pin</td>
<td>D-Sub HD plug, 15-pin</td>
</tr>
<tr>
<td>Vᵣ</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sens 2</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>SensGND</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

²) cables no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
²) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)

Ratings for "Sensor 2" switching input

- Optodecoupled, reverse polarity protected
- Can be wired with the PNP output of a sensor

Electrical values

- Low: \(Vᵣ \leq 2 \text{ V}; Iᵣ \leq 0.3 \text{ mA} \)
- High: \(6 \text{ V} \leq Vᵣ \leq 32 \text{ V}; 0.7 \text{ mA} \leq Iᵣ \leq 5 \text{ mA} \)

Function assignment to "Sensor 2" switching input via SOPAS

- "Sensor/Input 2":
 - Start of reading clock
 - Stop of reading clock
 - Start teach in matchcode/start code comparison
 - Increment input
 - If required further functions in the future

Switch S3: SensGND-GND

ON: GND of the sensor connected to GND of CDB620/LECTOR®620.
OFF: Sensor connected electrically isolated to the CDB620/LECTOR®620.
Reference potential valid for all switching inputs ("Sensor 1/2" and "In 1/2")
3.5.7 Switching output External Input 1 on connection module CDB620

Wiring the “External input 1” of the LECTOR®620 in the CDB620 connection module (“In 1” switching input)

a) Sensor supplied by CDB620

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP sensor</td>
<td>e.g. photo-electric switch</td>
</tr>
<tr>
<td>CDB620</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Uᵢ⁺</td>
</tr>
<tr>
<td>16</td>
<td>In 1</td>
</tr>
<tr>
<td>18</td>
<td>SGND</td>
</tr>
<tr>
<td>8</td>
<td>Shield</td>
</tr>
<tr>
<td>S3</td>
<td>GND</td>
</tr>
<tr>
<td>CMC600</td>
<td></td>
</tr>
<tr>
<td>3.32 K</td>
<td></td>
</tr>
</tbody>
</table>

LECTOR®620

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Aux</td>
<td>(RS-232)</td>
</tr>
<tr>
<td>LECTOR®620</td>
<td></td>
</tr>
<tr>
<td>“External input 1”</td>
<td></td>
</tr>
</tbody>
</table>

b) Sensor connected electrically isolated and externally supplied

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP sensor</td>
<td>e.g. photo-electric switch</td>
</tr>
<tr>
<td>CDB620</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Uᵢ⁺</td>
</tr>
<tr>
<td>16</td>
<td>In 1</td>
</tr>
<tr>
<td>18</td>
<td>SGND</td>
</tr>
<tr>
<td>8</td>
<td>Shield</td>
</tr>
<tr>
<td>S3</td>
<td>GND</td>
</tr>
<tr>
<td>CMC600</td>
<td></td>
</tr>
<tr>
<td>3.32 K</td>
<td></td>
</tr>
</tbody>
</table>

**Software-controlled, the CMC600 transfers the switching status of its physical “In 1” input automatically via the cable to the serial Aux data interface of the LECTOR®620. The LECTOR®620 converts the status internally to its logical “External input 1”.

Ratings for “External input 1” (*“In 1” switching input*)

Switching behavior
- Power fed to the input starts the assigned function, e.g. start of reading clock.
- (default setting: logic not inverted (active high), debouncing 10 ms)

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optodecoupled, reverse polarity protected</td>
</tr>
<tr>
<td>Can be wired with the PNP output of a sensor</td>
</tr>
</tbody>
</table>

Electrical values
- Low: \(Vᵢ \leq 2 \text{ V}; Iᵢ \leq 0.3 \text{ mA} \)
- High: \(6 \text{ V} \leq Vᵢ \leq 32 \text{ V}; 0.7 \text{ mA} \leq Iᵢ \leq 5 \text{ mA} \)

Function assignment to “External input 1” via SOPAS:
- Start of reading clock
- Stop of reading clock
- Start teach-in matchcode/start code comparison
- If required further functions in the future

Switch S3: SGND-GND
- ON: GND of the sensor connected to GND of CDB620/CMC600.
- OFF: Sensor connected electrically isolated to the CDB620/CMC600.

Reference potential valid for all switching inputs (“Sensor 1/2” and “In 1/2”).

c) Switch supplied by CDB620

d) Switch connected electrically isolated and externally supplied

Connect the switch as shown in b)
3.5.8 Switching output External Input 2 on connection module CDB620

Wiring the "External input 2" of the LECTOR®620 in the CDB620 connection module ("In 2" switching input)

a) Sensor supplied by CDB620

b) Sensor connected electrically isolated and externally supplied

c) Switch supplied by CDB620

- e.g. photo-electric switch

- PNP sensor

- U_in* = DC 10 to 30 V

- V_in = max. 32 V

- S3 : SGND-GND

- S4 : CMC

- Connect the switch as shown in b)

- Software-controlled, the CMC600 transfers the switching status of its physical "In 2" input automatically via the cable to the serial Aux data interface of the LECTOR®620.

- The LECTOR®620 converts the status internally to its logical "External input 2".

- Ratings for "External input 2" ("In 2" switching input)

- Power fed to the input starts the assigned function, e.g. stop of reading clock.

 (default setting: logic not inverted (active high), debouncing 10 ms)

- Optodecoupled, reverse polarity protected

- Can be wired with the PNP output of a sensor

- Switching behavior

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>Features</th>
<th>Electrical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power fed to the input starts the assigned function, e.g. stop of reading clock. (default setting: logic not inverted (active high), debouncing 10 ms)</td>
<td>- Optodecoupled, reverse polarity protected</td>
<td>Low: V_in ≤ 2 V; I_in ≤ 0.3 mA</td>
</tr>
<tr>
<td></td>
<td>- Can be wired with the PNP output of a sensor</td>
<td>High: 6 V ≤ V_in ≤ 32 V; 0.7 mA ≤ I_in ≤ 5 mA</td>
</tr>
</tbody>
</table>

- Feature assignment to "External input 2" via SOPAS:

 - Start of reading clock
 - Stop of reading clock
 - Start teach in matchcode/start code comparison
 - if required further functions in the future

- Switch S3: SGND-GND

<table>
<thead>
<tr>
<th>Switch S3: SGND-GND</th>
<th>ON: GND of the sensor connected to GND of CDB620/CMC600.</th>
<th>OFF: Sensor connected electrically isolated to the CDB620/CMC600.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference potential valid for all switching inputs ("Sensor 1/2" and "In 1/2")</td>
<td></td>
</tr>
</tbody>
</table>
3.5.9 Switching output Result 1 on CDB620

Wiring the "Result 1" switching output of the LECTOR®620 in the CDB620 connection module

Ratings for "Result 1" switching output

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage (V_s) (default setting: Device Ready (static), logic: not inverted (active high))</th>
</tr>
</thead>
</table>
| Features | Short-circuit proof + temperature protected
| | - Galvanically not separate from \(V_s \) |
| Electrical values | \(0 \leq V_{out} \leq V_s \) Guaranteed: \((V_s - 3.0 \text{ V}) \leq V_{out} \leq V_s \) with \(I_{out} \leq 100 \text{ mA} \) |

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable(^a)</th>
<th>Cable(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M12 socket,</td>
<td>D-Sub HD plug,</td>
</tr>
<tr>
<td></td>
<td>17-pin</td>
<td>15-pin</td>
</tr>
<tr>
<td>(V_s)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Result 1</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)
3.5.10 Switching output Result 2 on CDB620

Wiring the “Result 2” switching output of the LECTOR®620 in the CDB620 connection module

Ratings for “Result 2” switching output

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage V_s (default setting: Good Read, 100 ms, logic: not inverted (active high))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Short-circuit proof + temperature protected + Galvanically not separate from V_s</td>
</tr>
<tr>
<td>Electrical values</td>
<td>$0 \leq V_{out} \leq V_s$ Guaranteed: $(V_s - 3.0 , \text{V}) \leq V_{out} \leq V_s$ with $I_{out} \leq 100 , \text{mA}$</td>
</tr>
</tbody>
</table>

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable<sup>1</sup></th>
<th>Cable<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>M12 plug, 17-pin</td>
<td>D-Sub HD plug, 15-pin</td>
<td></td>
</tr>
<tr>
<td>M12 socket, 17-pin</td>
<td>Open end, 17 core</td>
<td></td>
</tr>
</tbody>
</table>

1. cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2. cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)
3.5.11 Switching output External Output 1 on CDB620

Wiring the "External output 1" of the LECTOR®620 in the CDB620 connection module ("Out 1" switching output)

LECTOR®620 → CDB620 → Load (e.g. PLC)

- "External output 1" → Serial Aux (RS-232)
- Quenching circuit: Install an anti-surge diode directly at the load!

Ratings for "External output 1" ("Out 1" switching output)

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage U_{in}^* (default setting: no function/disabled, logic: not inverted (active high))</th>
</tr>
</thead>
</table>
| Features | - Short-circuit proof + temperature protected
| | - Galvanically not separate from U_{in}^* |
| Electrical values | $0 \leq V_{out} \leq U_{in}^*$
| | Guaranteed:
| | $(U_{in}^* - 1.5 V) \leq V_{out} \leq U_{in}^*$ with $I_{out} \leq 100$ mA |

The LECTOR®620 indicates the switching status of its logical "external output 1" via the serial Aux data interface. Software-controlled, the status is automatically taken over by the CMC600 via the cable and converted to the physical "Out 1" output in the CDB620.
3.5.12 Switching output External Output 2 on CDB620

Wiring the "External output 2" of the LECTOR®620 in the CDB620 connection module ("Out 2" switching output)

The LECTOR®620 indicates the switching status of its logical "external output 2" via the serial Aux data interface. Software-controlled, the status is automatically taken over by the CMC600 via the cable and converted to the physical "Out 2" output in the CDB620.

Ratings for "External output 2" ("Out 2" switching output)

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage (U_{IN}^*) (default setting: no function/disabled, logic: not inverted (active high))</th>
</tr>
</thead>
</table>
| Features | - Short-circuit proof + temperature protected
| | - Galvanically not separate from \(U_{IN}^* \) |
| Electrical values | \(0 \, \text{V} \leq V_{out} \leq U_{IN}^* \)
| | Guaranteed: \((U_{IN}^* - 1.5 \, \text{V}) \leq V_{out} \leq U_{IN}^* \) with \(I_{out} \leq 100 \, \text{mA} \) |

\(U_{IN}^* = \text{DC 10 to 30 V} \)
3.6 Wiring diagram of connection module CDM420-0001

- **LEDs**: ON/OFF
- **S8**: ON/OFF
- **CMC600 parameter cloning module** (optional)
- **ON**: POWER
- **OFF**: Sensor 1, Sensor 2, Sensor 3, Sensor 4, Result 1, Result 2
- **S2**: ON/RS-485
- **S3**: ON/Term422
- **S4**: ON/TermCAN
- **S6**: ON/SNAND
- **CMC600**: parameter cloning module
- **0.8 A slow**: S1
- **1-2**: +24 V, GND
- **3-4**: +24 V, GND
- **5-6**: Shield, Shield
- **7-8**: Shield, Shield
- **9-10**: Shield, Shield
- **11**: CAN_H, GND
- **12**: CAN_L, GND
- **13**: T+, T-
- **14**: R+, R-
- **15**: Result 1, Result 2
- **16**: Sensor 1, Sensor 2
- **17**: Aux In 1, Aux In 2
- **18**: Aux Out 1, Aux Out 2
- **19**: SGND, SGND
- **20**: CAN_H, CAN_L
- **21**: CAN_H, GND
- **22**: CAN_L, GND
- **23**: T+, T-
- **24**: R+, R-
- **25**: Result 1, Result 2
- **26**: Sensor 1, Sensor 2
- **27**: Aux In 1, Aux In 2
- **28**: Aux Out 1, Aux Out 2
- **29**: SGND, SGND
- **30**: CAN_H, CAN_L
- **31**: CAN_H, GND
- **32**: CAN_L, GND
- **33**: T+, T-
- **34**: R+, R-
- **35**: Result 1, Result 2
- **36**: Sensor 1, Sensor 2
- **37**: Aux In 1, Aux In 2
- **38**: Aux Out 1, Aux Out 2
- **39**: SGND, SGND
- **40**: CAN_H, CAN_L
- **VS**: DC 10 to 30 V
- **External reading clock sensor** (e.g., photoelectric switch)
- **V_s**: on terminal +24 V complies with V_s on terminal +24 V** after fuse F and switch S1
- **= an CMC600 is required to provide the additional switching inputs and outputs**
Using connection module CDM420-0001 with other modules

If connection module CDM420-0001 is used with other modules, the following supply voltages are required:

<table>
<thead>
<tr>
<th>Connection module</th>
<th>Additional module</th>
<th>Function</th>
<th>Supply voltage/additional power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDM420-0001</td>
<td>-</td>
<td>-</td>
<td>DC 10 ... 30 V</td>
</tr>
<tr>
<td>Connection Module Cloning CMC600 Article no. 1042259</td>
<td>-</td>
<td>Parameter memory module for the external storage of the LECTOR®620's parameter values and automatic activation of operating modes after switching on</td>
<td>DC 10 ... 30 V/ 0.5 W</td>
</tr>
<tr>
<td>Connection Module Power CMP400 Article no. 2029468</td>
<td>-</td>
<td>Power supply module for supplying a LECTOR®620 with voltage from the AC mains power supply</td>
<td>AC 100 ... 250 V, 50 ... 60 Hz</td>
</tr>
<tr>
<td>Connection Module Power CMP490 Article no. 2030091</td>
<td>-</td>
<td>Power supply module for supplying a LECTOR®620 with voltage directly from the AC mains power supply</td>
<td>AC 100 ... 250 V, 50 ... 60 Hz</td>
</tr>
</tbody>
</table>

Information on wiring/configuration of the connection module, as well as technical data, is provided in operating instructions “Connection Module CDM420-0001” (article no. 8010004, German/English).

Detailed descriptions on the functions and installation of the additional modules can be found in the corresponding installation/operating instructions.
3.6.1 Voltage supply via connection module CDM420-0001

Wiring the power supply voltage to the CDM420-0001 connection module

![Diagram of wiring](image)

VS = DC 10 to 30 V

S1: POWER
ON
OFF

ON:
Power supply voltage \(U_1 (+24 \text{ V}) \) switched as \(U_1 (+24 \text{ V}^*) \) via fuse to CDM420-0001 and LECTOR®620. \(U_1 (+24 \text{ V}^*) \) additionally available on terminals 29 and 39.

OFF:
CDM420-0001 and LECTOR®620 disconnected from power supply voltage. Recommended position during all electrical installation work.

VS on terminal "+24 V" complies with terminal "+24 V*" after fuse F and switch S1
3.6.2 Serial host data interface RS-232 on connection module CDM420-0001

Wiring the RS-232 data interface of the LECTOR® 620 in the CDM420-0001 connection module

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable 1)</th>
<th>Cable 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxD</td>
<td>M12 socket, 17-pin</td>
<td>D-Sub HD plug, 15-pin</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>Shield</td>
<td>Shield</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)
3.6.3 Serial host data interface RS-422 on connection module CDM420-0001

Wiring the RS-422 data interface of the LECTOR®620 in the CDM420-0001 connection module

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable(^{1}) M12 socket, 17-pin</th>
<th>Cable(^{2}) D-Sub HD plug, 15-pin</th>
<th>Cable(^{2}) M12 socket, 15-pin</th>
<th>Open end, 17 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD⁺</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>pink</td>
</tr>
<tr>
<td>TD⁻</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>yellow</td>
</tr>
<tr>
<td>RD⁺</td>
<td>11</td>
<td>6</td>
<td>11</td>
<td>gray-pink</td>
</tr>
<tr>
<td>RD⁻</td>
<td>12</td>
<td>7</td>
<td>12</td>
<td>red-blue</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>brown</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)
3.6.4 CAN interface on connection module CDM420-0001

Wiring the LECTOR®620 in the CDM420-0001 connection module for the SICK CAN SENSOR Network

Connection of power supplies as well as of reading clock sensor e.g. to the master here not shown.

1) cable:
 - no. 2049764 (0.9 m/2.95 ft)
 - no. 2055419 (2 m/6.56 ft)
 - no. 2055420 (3 m/9.84 ft)
3.6.5 Switching output Sensor 1 on connection module CDM420-0001

Wiring the "Sensor 1" switching input of the LECTOR®620 in the CDM420-0001 connection module

a) Sensor supplied by CDM420-0001

![Diagram of wiring for Sensor 1 supplied by CDM420-0001]

b) Sensor connected electrically isolated/externally supplied

![Diagram of wiring for Sensor 1 connected electrically isolated/externally supplied]

c) Switch supplied by CDM420-0001

![Diagram of wiring for Switch supplied by CDM420-0001]

d) Switch connected electrically isolated/externally supplied

Connect the switch as shown in b)

Ratings for "Sensor 1" switching input

<table>
<thead>
<tr>
<th>Signal</th>
<th>M12 socket, 17-pin</th>
<th>D-Sub HD plug, 15-pin</th>
<th>M12 socket, 17-pin</th>
<th>Open end, 17 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>in</sub></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>blue</td>
</tr>
<tr>
<td>Sensor 1</td>
<td>10</td>
<td>14</td>
<td>10</td>
<td>violet</td>
</tr>
<tr>
<td>SensGND</td>
<td>9</td>
<td>15</td>
<td>9</td>
<td>red</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>brown</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)

Electrical values

- **Low**: \(V_{\text{in}} \leq 2 \text{ V}; I_{\text{in}} \leq 0.3 \text{ mA} \)
- **High**: \(6 \text{ V} \leq V_{\text{in}} \leq 32 \text{ V}; 0.7 \text{ mA} \leq I_{\text{in}} \leq 5 \text{ mA} \)

Function assignment to "Sensor 1" switching input via SOPAS ("Sensor/Input 1"):
- Start of reading clock
- Stop of reading clock
- Start teach-in matchcode/start code comparison
- Increment input
- If required further functions in the future
3.6.6 Switching output Sensor 2 on connection module CDM400-0001

Wiring the "Sensor 2" switching input of the LECTOR®620 in the CDM400-0001 connection module

a) Sensor supplied by CDM400-0001

e.g. photo-electric switch

cable, e.g. no. 2055419

(2 m/6.56 ft)

b) Sensor connected electrically isolated/externally supplied

e.g. photo-electric switch

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable²</th>
<th>Open end, 17 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>V+</td>
<td>M12 socket, 17-pin</td>
<td>blue</td>
</tr>
<tr>
<td>V–</td>
<td>M12 socket, 15-pin</td>
<td>2</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>Sensor 2</td>
<td>GND</td>
<td>4</td>
</tr>
<tr>
<td>SensGND</td>
<td>GND</td>
<td>15</td>
</tr>
<tr>
<td>Low: V in ≤ 2 V; I in ≤ 0.3 mA</td>
<td>white-yellow</td>
<td></td>
</tr>
<tr>
<td>High: 6 V ≤ V in ≤ 32 V; 0.7 mA ≤ I in ≤ 5 mA</td>
<td>red</td>
<td></td>
</tr>
</tbody>
</table>

3) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2059420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)

Switching behavior
- Power fed to the input starts the assigned function, e.g. stop of reading clock,
 (default setting: logic not inverted (active high),
 debouncing 10 ms)
- Optodecoupled, reverse polarity protected
- Can be wired with the PNP output of a sensor

Electrical values
- L: ≤ 0.3 mA
- H: 0.7 mA ≤ L ≤ 5 mA

Function assignment to "Sensor 2" switching input via SOPAS ("Sensor/Input 2"):
- Start of reading clock
- Stop of reading clock
- Start teach-in matchcode/start code comparison
- Increment input
- If required further functions in the future

Switch S6: SGND
- ON: GND of the sensor connected to GND of CDM400-0001/LECTOR®620.
- OFF: Sensor connected electrically isolated to the CDM400-0001/LECTOR®620.
Reference potential valid for all switching inputs
("Sensor 1/2" and "Aux In 1/2")

d) Switch connected electrically isolated/externally supplied

Connect the switch as shown in b)
3.6.7 Switching output External Input 1 on connection module CDM420-0001

Wiring the "External input 1" of the LECTOR®620 in the CDM420-0001 connection module ("Aux In 1" switching input)

a) Sensor supplied by CDM420-0001

e.g. photo-electric switch

--- Diagram ---

b) Sensor connected electrically isolated/externally supplied

e.g. photo-electric switch

--- Diagram ---

Software-controlled, the CMC600 transfers the switching status of its physical "Aux In 1" input automatically via the cable to the serial Aux data interface of the LECTOR®620.

The LECTOR®620 converts the status internally to its logical "External input 1".

Ratings for "External input 1" ("Aux In 1" switching input)

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>Power fed to the input starts the assigned function, e.g. start of reading clock. (default setting: logic not inverted (active high), debouncing 10 ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>- Optodecoupled, reverse polarity protected - Can be wired with the PNP output of a sensor</td>
</tr>
<tr>
<td>Electrical values</td>
<td>Low: (V_i \leq 2 \text{ V}; I_i \leq 0.3 \text{ mA}) High: (6 \text{ V} \leq V_i \leq 32 \text{ V}; 0.7 \text{ mA} \leq I_i \leq 5 \text{ mA})</td>
</tr>
</tbody>
</table>

Function assignment to "External input 1" via SOPAS:
- Start of reading clock
- Stop of reading clock
- Start teach-in matchcode/start code comparison
- if required further functions in the future

Switch S6: SGND
ON: GND of the sensor connected to GND of CDM420-0001/CMC600.
OFF: Sensor connected electrically isolated to the CDM420-0001/CMC600.
Reference potential valid for all switching inputs ("Sensor 1/2" and "Aux In 1/2")

c) Switch supplied by CDM420-0001

--- Diagram ---

d) Switch connected electrically isolated/externally supplied

Connect the switch as shown in b)
3.6.8 Switching output External Input 2 on connection module CDM420-0001

Wiring the "External input 2" of the LECTOR®620 in the CDM420-0001 connection module ("Aux In 2" switching input)

a) Sensor supplied by CDM420-0001

b) Sensor connected electrically isolated/externally supplied

c) Switch supplied by CDM420-0001

d) Switch connected electrically isolated/externally supplied

Software-controlled, the CMC600 transfers the switching status of its physical "Aux In 2" input automatically via the cable to the serial Aux data interface of the LECTOR®620. The LECTOR®620 converts the status internally to its logical "External input 2".

Ratings for "External input 2" ("Aux In 2" switching input)

Switching behavior
- Power fed to the input starts the assigned function, e.g. stop of reading clock.
- (default setting: logic not inverted (active high), debouncing 10 ms)

Features
- Optodecoupled, reverse polarity protected
- Can be wired with the PNP output of a sensor

Electrical values
- Low: \(V_{in} \leq 2 \text{ V}; I_{in} \leq 0.3 \text{ mA} \)
- High: \(6 \text{ V} \leq V_{in} \leq 32 \text{ V}; 0.7 \text{ mA} \leq I_{in} \leq 5 \text{ mA} \)

Function assignment to "External input 2" via SOPAS:
- Start of reading clock
- Stop of reading clock
- Start teach-in matchcode/start code comparison
- if required further functions in the future

Switch S6: SGND
- ON: GND of the sensor connected to GND of CDM420-0001/CMC600.
- OFF: Sensor connected electrically isolated to the CDM420-0001/CMC600.
- Reference potential valid for all switching inputs ("Sensor 1/2" and "Aux In 1/2")
3.6.9 Switching output Result 1 on CDM420-0001

Wiring the "Result 1" switching output of the LECTOR®620 in the CDM420-0001 connection module

![Diagram showing wiring](diagram)

Ratings for "Result 1" switching output

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage (V_s (+24 \text{ V})) (default setting: Device Ready (static), logic: not inverted (active high))</th>
</tr>
</thead>
</table>
| Features | - Short-circuit proof + temperature protected
 - Galvanically not separated from \(V_s (+24 \text{ V}) \) |
| Electrical values | \(0 \text{ V} \leq V_{\text{out}} \leq V_s \)
 Guaranteed: \((V_s - 3.0 \text{ V}) \leq V_{\text{out}} \leq V_s \) with \(I_{\text{out}} \leq 100 \text{ mA} \) |

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable(^1)</th>
<th>Cable(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M12 socket, 17-pin</td>
<td>D-Sub HD plug, 15-pin</td>
</tr>
<tr>
<td>(V_s)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Result 1</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)
3.6.10 Switching output Result 2 on CDM420-0001

Wiring the "Result 2" switching output of the LECTOR®620 in the CDM420-0001 connection module

LECTOR®620

- Voltage supply: \(V_s \)
- Pin: 2
- Switching output: Result 2
- Ground: GND

CDM420-0001

- Voltage supply: +24 V
- Pin: 1
- Shield: 5
- Switching output: Result 2
- Ground: GND

Load (e.g. PLC)

- Voltage supply: \(V_{out} \)
- Pin: 16

Cable

- M12 plug, 17-pin, A-type encoded
- D-Sub HD plug, 15-pin

Ratings for "Result 2" switching output

Switching behavior

- PNP switching against the supply voltage \(V_s (+24 \text{ V}^+ \)) (default setting: Good Read, 100 ms logic: not inverted (active high))

Features

- Short-circuit proof + temperature protected
- Galvanically not separated from \(V_s (+24 \text{ V}^+ \))

Electrical values

- \(0 \text{ V} \leq V_{out} \leq V_s \)
- Guaranteed: \((V_s - 3.0 \text{ V}) \leq V_{out} \leq V_s \) with \(I_{out} \leq 100 \text{ mA} \)

Pin and wire color assignment of prefabricated cables

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable(^a)</th>
<th>Cable(^b)</th>
<th>Open end, 17 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_s)</td>
<td>M12 socket, 17-pin</td>
<td>D-Sub HD plug, 15-pin</td>
<td>blue</td>
</tr>
<tr>
<td>Result 2</td>
<td>2</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>5</td>
<td>brown-green</td>
</tr>
</tbody>
</table>

1) cables no. 2049764 (0.9 m/2.95 ft), no. 2055419 (2 m/6.56 ft), no. 2055420 (3 m/9.84 ft)
2) cables no. 6042772 (3 m/9.84 ft), no. 6042773 (5 m/16.4 ft)

Quenching circuit:

- Install an anti-surge diode directly at the load!
3.6.11 Switching output External Output 1 on CDM420-0001

Wiring the "External output 1" of the LECTOR®620 in the CDM420-0001 connection module ("Aux Out 1" switching output)

LECTOR®620

- "External output 1"
- Serial Aux
 (RS-232)

CDM420-0001

- CMC600
- +24 V* (V_supply)
- Shield 6
- Aux Out 1 40
- GND 36

Load (e.g. PLC)

- V_out

V_s = DC 10 to 30 V

Ratings for "External output 1" ("Aux Out 1" switching output)

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>Features</th>
<th>Electrical values</th>
</tr>
</thead>
</table>
| PNP switching against the supply voltage V_supply (+24 V*) (default setting: no function/disabled, logic: not inverted (active high)) | – Short-circuit proof + temperature protected
– Galvanically not separated from V_supply (+24 V*) | 0 V ≤ V_out ≤ V_supply
Guaranteed:
(U_supply − 1.5 V) ≤ V_out ≤ V_supply with I_out ≤ 100 mA |

For inductive load:

Quenching circuit:
Install an anti-surge diode directly at the load!

The LECTOR®620 indicates the switching status of its logical "external output 1" via the serial Aux data interface.
Software-controlled, the status is automatically taken over by the CMC600 via the cable and converted to the physical "Aux Out 1" output in the CDM420-0001.
3.6.12 Switching output External Output 2 on CDM420-0001

Wiring the "External output 2" of the LECTOR®620 in the CDM420-0001 connection module ("Aux Out 2" switching output)

The LECTOR®620 indicates the switching status of its logical "external output 2" via the serial Aux data interface. Software-controlled, the status is automatically taken over by the CMC600 via the cable and converted to the physical "Aux Out 2" output in the CDM420-0001.

Ratings for "External output 2" ("Aux Out 2" switching output)

<table>
<thead>
<tr>
<th>Switching behavior</th>
<th>PNP switching against the supply voltage V_s ($+24 V^*$) (default setting: no function/disabled, logic: not inverted (active high))</th>
</tr>
</thead>
</table>
| Features | Short-circuit proof + temperature protected
| | Galvanically not separated from V_s ($+24 V^*$) |
| Electrical values | $0 \leq V_{out} \leq V_s$
| | Guaranteed: $-(V_s - 1.5 V) \leq V_{out} \leq V_s$ with $I_{out} \leq 100 mA$ |

For inductive load:

Quenching circuit: Install an anti-surge diode directly at the load!
Open source software and LICENSE TEXTS

4.1 NCURSES – 5.7 - License

Copyright (c) 2006 Free Software Foundation, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, distribute with modifications, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ABOVE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.

These are the principal authors/contributors of ncurses since 1.9.9e, in decreasing order of their contribution:

- TD Thomas E. Dickey
- JPF Juergen Pfeifer
- ESR Eric S Raymond
- AVL Alexander V Lukyanov
- PB Philippe Blain
- SV Sven Verdoolaege

4.2 Z-Lib 1.2.3

Copyright (C) 1995-2004 Jean-loup Gailly and Mark Adler

This software is provided ‘as-is’, without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

4.3 e2fsprogs-1.41.11 (UUID-license based on BSD 3-clause license)

Copyright (C) 1996, 1997 Theodore Ts’o.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, and the entire permission notice in its entirety, including the disclaimer of warranties.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-NESS FOR A PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTH-OR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILI-TY OF SUCH DAMAGE.

4.4 Dropbear – 0.52.tar.bz2

Licensor:
- Matt Johnston
- Mihnea Stoeneescu
- Tom StDenis
- Tatu Ylonen
- Andre Luca
- odd C. Miller
- Simon Tatham

Dropbear contains a number of components from different sources, hence there are a few licenses and authors involved. All licenses are fairly non-restrictive.

The majority of code is written by Matt Johnston, under the license below.

Portions of the client-mode work are (c) 2004 Mihnea Stoeneescu, under the same license:

Copyright (c) 2002-2008 Matt Johnston

Portions copyright (c) 2004 Mihnea Stoeneescu

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Import code in keyimport.c is modified from PuTTY's import.c, licensed as follows:

PuTTY is copyright 1997-2003 Simon Tatham.

Portions copyright Robert de Bath, Joris van Rantwijk, Delian Delchev, Andreas Schultz, Jeroen Massar, Wez Furlong, Nicolas Barry, Justin Bradford, and CORE SDI S.A.
Open source software and LICENSE TEXTS

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.5 OpenSSH – 5.1p1

Cryptographic attack detector for ssh - source code

Copyright (c) 1998 CORE SDI S.A., Buenos Aires, Argentina.

All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that this copyright notice is retained.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES ARE DISCLAIMED. IN NO EVENT SHALL CORE SDI S.A. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR MISUSE OF THIS SOFTWARE.

Ariel Futoransky <futo@core-sdi.com>

<http://www.core-sdi.com>

Copyright 1995, 1996 by David Mazieres <dm@lcs.mit.edu>.

Modification and redistribution in source and binary forms is permitted provided that due credit is given to the author and the OpenBSD project by leaving this copyright notice intact.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
RING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Remaining components of the software are provided under a standard 2-term BSD licence
with the following names as copyright holders:

• Markus Friedl
• Theo de Raadt
• Niels Provos
• Dug Song
• Aaron Campbell
• Damien Miller
• Kevin Steves
• Daniel Kouril
• Wesley Griffin
• Per Allansson
• Nils Nordman
• Simon Wilkinson

Portable OpenSSH additionally includes code from the following copyright holders, also un-
der the 2-term BSD license:

• Ben Lindstrom
• Tim Rice
• Andre Lucas
• Chris Adams
• Corinna Vinschen
• Cray Inc.
• Denis Parker
• Gert Doering
• Jakob Schlyter
• Jason Downs
• Juha Yrjölä
• Michael Stone
• Networks Associates Technology, Inc.
• Solar Designer
• Todd C. Miller
• Wayne Schroeder
• William Jones
• Darren Tucker
• Sun Microsystems
• The SCO Group
• Daniel Walsh

Copyright < year > <copyright holders >. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met:
Copyright < year > <copyright holders >. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Portable OpenSSH contains the following additional licenses:

a) md5crypt.c, md5crypt.h

"THE BEER-WARE LICENSE" (Revision 42):
<pkh@login.dknet.dk> wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day, and you think this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp

b) snprintf replacement

Copyright Patrick Powell 1995
This code is based on code written by Patrick Powell (papowell@astart.com) It may be used for any purpose as long as this notice remains intact on all source code distributions

c) Compatibility code (openbsd-compat)

Apart from the previously mentioned licenses, various pieces of code in the openbsd-compat/ subdirectory are licensed as follows:

Some code is licensed under a 3-term BSD license, to the following copyright holders:

- Todd C. Miller
- Theo de Raadt
- Damien Miller
- Eric P. Allman
- The Regents of the University of California
- Constantin S. Svintsoff

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

d) Some code is licensed under an ISC-style license, to the following copyright holders:
 - Internet Software Consortium
 - Todd C. Miller
 - Reyk Floeter
 - Chad Mynhier

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND TODD C. MILLER DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL TODD C. MILLER BE LIABLE FOR ANY DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

e) Some code is licensed under a MIT-style license to the following copyright holders:
 - Free Software Foundation, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ABOVE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.
4.6 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA- Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4.7 Libstdc++-v3

The source code of libstdc++-v3 is distributed under version 2 of the GNU General Public License, with the so-called "runtime exception," as follows (or see any header or implementation file):

As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License.

4.8 Glibc 2.8

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License.
"The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version".

The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License. “Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work’s System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

• b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

• c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they
are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.

- d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

- a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.

- b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

- c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.

- d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

- e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which
the particular user actually uses, or expects or is expected to use, the product. A product is
a consumer product regardless of whether the product has substantial commercial, indus-
trial or non-consumer uses, unless such uses represent the only significant mode of use of
the product. “Installation Information” for a User Product means any methods, procedures,
authorization keys, or other information required to install and execute modified versions of
a covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of posses-
sion and use of the User Product is transferred to the recipient in perpetuity or for a fixed
term (regardless of how the transaction is characterized), the Corresponding Source con-
vveyed under this section must be accompanied by the Installation Information. But this re-
quirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).
The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network. Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly documented (and with an im-
plementation available to the public in source code form), and must require no special
password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the ex-
tent that they are valid under applicable law. If additional permissions apply only to part of
the Program, that part may be used separately under those permissions, but the entire Pro-
gram remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written to
require their own removal in certain cases when you modify the work.) You may place addi-
tional permissions on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or
• b) Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or
• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or
• d) Limiting the use for publicity purposes of names of licensors or authors of the mate-
rial; or
 • e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
 • f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License.
You are not responsible for enforcing compliance by third parties with this License. An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor’s “contributor version”. A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
Open source software and LICENSE TEXTS

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
Further locations at www.sick.com