EnforceKey Single Door

Functional safety system

Described product

EnforceKey Single Door

Manufacturer

SICK AG Erwin-Sick-Str. 1 79183 Waldkirch Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of SICK AG.

The trademarks stated in this document are the property of their respective owner.

© SICK AG. All rights reserved.

Original document

This document is an original document of SICK AG.

CE

Contents

1	About this document					
	1.1	Purpose of this document				
	1.2	Scope				
	1.3	Target groups				
	1.4	Further information				
	1.5	Symbols and document conventions				
2	Safe	ety information				
	2.1	Basic safety notes				
	2.2	Intended use				
	2.3	Requirements for the qualification of personnel				
3	Proc	duct description				
	3.1	Setup and function				
		3.1.1 Structure of the EnforceKey Single Door				
		3.1.2 Components of the EnforceKey Single Door				
		3.1.3 Application-dependent components				
	3.2	Product characteristics				
		3.2.1 Wiring options: With or without Standstill Monitor				
		3.2.2 Safety locking device wiring				
		3.2.3 Status indicators				
	3.3	Interfaces				
Л	Proi	ect planning 21				
- T	1 10	Manufacturer of the machine				
	4.1 4.2	Company operating the machine				
	4.2	Company operating the machine				
	4.3	Requirements for the mounting locations				
	4.4	Integrating the equipment into the electrical control				
		4.4.1 Cabling requirements				
		4.4.2 Machine that is to be protected				
		4.4.3 Safety locking devices				
		4.4.4 Preventing unexpected startup				
5	Transport and storage 28					
	5.1	Transport				
	5.2	Storage				
6	Mounting 29					
	6.1	1 Safety 2				
	6.2	Unpacking				
	6.3	Mounting the control unit				
	6.4	Mounting the entry module				
	6.5	Mounting the clearance module				
7	Flec	trical installation 33				

	7.1	Safety	33
	7.2	Block diagram	33
	7.3	Connecting the control unit to the system	34
	7.4	Entry module device connection	39
	7.5	Clearance module device connection	40
	7.6	Connection diagrams	40
		7.6.1 Standard wiring option	41
		7.6.2 ECO wiring option	45
8	Conf	iguration	46
	8.1	Safety	46
	8.2	Configuring standstill monitoring	46
		8.2.1 Wiring option: Without Standstill Monitor, with delay time	46
		8.2.2 Wiring option: With Standstill Monitor	46
	8.3	Configuring the emergency stop function	46
9	Com	missioning	47
	9.1	Safety	47
	9.2	Teaching in the key	47
		9.2.1 Teach-in sequence on entry module	48
		9.2.2 Teach-in sequence on clearance module	48
		9.2.3 Possible errors during the teach-in sequence	49
	9.3	Starting the EnforceKey Single Door	49
	9.4	Checks	50
	9.5	Validation	50
10	Oper	ation	51
	10.1	Safety	51
	10.2	Regular inspection of the protective device by qualified safety per- sonnel	51
	10.3	Entering the hazardous area, working in the hazardous area, and	
		exiting the hazardous area	51
	10.4	Possible errors during operation	53
11	Trou	bleshooting	55
	11.1	Safety	55
	11.2	LEDs	55
	11.3	Status and processes	56
	11.4	Advanced diagnostics	57
	11.5	Replacing individual components	57
12	Deco	ommissioning	59
	12.1	Disposal	59
13	Tech	nical data	60
	13.1	Data sheet for the EnforceKey Single Door	60
	13.2	Control unit data sheet	60

	13.3	Entry mo	odule data sheet	61		
	13.4	Clearanc	e module data sheet	63		
	13.5	Control u	Init dimensional drawing	65		
	13.6	Entry mo	dule dimensional drawing	65		
	13.7	Clearanc	e module dimensional drawing	66		
	13.8	Key dime	ensional drawing	66		
	13.9	Example	calculations for safety functions	66		
		13.9.1	Initiating a stop	66		
		13.9.2	Temporarily preventing access with the standard wiring option	69		
		13.9.3	Temporarily preventing access with the ECO wiring option	71		
14	Orde	ring info	ormation	74		
	14.1	Scope of	delivery	74		
	14.2	EnforceK	Key Single Door	74		
15	Spar	e parts		75		
	15.1	Modules	and spare parts	75		
	15.2	System p	olug and modules of the Flexi Soft safety controller	75		
16	Acce	ssories.		76		
	16.1	Accessor	ries	76		
	16.2	Connecti	ivity	76		
17	Anne	ex		78		
	17.1	Compliar	nce with EU directives	78		
	17.2	Checklist	t for initial commissioning and commissioning	79		
18	List	of figure	S	81		
19	List of tables					

1 About this document

1.1 Purpose of this document

These operating instructions contain the information required during the life cycle of the functional safety system.

These operating instructions are to be made available to all those who work with the functional safety system.

Please read these operating instructions carefully and make sure that you understand the content fully before working with the functional safety system.

1.2 Scope

These operating instructions apply to the EnforceKey Single Door functional safety system.

These operating instructions are included with SICK part number 8019917 (all available language versions of the operating instructions).

Further information can also be found in the following documents:

Document	Title	Part number
Operating instructions	Flexi Soft Modular Safety Con- troller Hardware	8012999
Operating instructions	Flexi Soft in the Flexi Soft Designer Configuration Soft- ware	8012998
Competence brochure	Guide for Safe Machinery	8008007

Table 1: Available documents

1.3 Target groups

These operating instructions are intended for the following target groups: project developers (planners, developers, designers), installers, electricians, safety experts (such as CE authorized representatives, compliance officers, people who test and approve the application), operators, and maintenance personnel.

1.4 Further information

www.sick.com

The following information is available via the Internet:

- Other language versions
- Data sheets and application examples
- CAD data for drawings and dimensional drawings
- Certificates (such as the EU declaration of conformity)
- Guide for Safe Machinery (six steps to a safe machine)

1.5 Symbols and document conventions

The following symbols and conventions are used in this document:

Safety notes and other notes

DANGER

Indicates a situation presenting imminent danger, which will lead to death or serious injuries if not prevented.

WARNING

Indicates a situation presenting possible danger, which may lead to death or serious injuries if not prevented.

CAUTION

Indicates a situation presenting possible danger, which may lead to moderate or minor injuries if not prevented.

Indicates a situation presenting possible danger, which may lead to property damage if not prevented.

Indicates useful tips and recommendations.

Instructions to action

- The arrow denotes instructions to action.
- 1. The sequence of instructions for action is numbered.
- 2. Follow the order in which the numbered instructions are given.
- \checkmark The check mark denotes the result of an instruction.

LED symbols

These symbols indicate the status of an LED:

- O The LED is off.
- The LED is flashing.
- The LED is illuminated continuously.

7

2 Safety information

2.1 Basic safety notes

This chapter contains general safety information for the functional safety system.

Further safety information is provided in the respective chapters to cover the specific situations in which the product may be used.

A Hazard due to lack of effectiveness of the protective device

In the case of non-compliance, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- Read this document carefully and ensure that you have fully understood the contents before you work with the device.
- Pay particular attention to all safety notes in this document.

2.2 Intended use

The functional safety system provides access protection for machines with one access door (see "Setup and function", page 10).

The functional safety system must only ever be used within the limits of the prescribed and specified technical data and operating conditions.

If the system is used improperly, modified inappropriately or tampered with in any way, any warranty provided by SICK AG shall be rendered void; furthermore, SICK AG shall not accept any responsibility or liability for any resulting damage and consequential damage.

Foreseeable misuse

The functional safety system is **not** suitable for use (list is not exhaustive):

- Outdoors
- Underwater
- In explosion-hazardous areas

2.3 Requirements for the qualification of personnel

Only authorized qualified safety personnel are permitted to configure, install, connect, commission, and maintain the functional safety system.

Project planning

For project planning, a person is considered competent when he/she has expertise and experience in the selection and use of protective devices on machines and is familiar with the relevant technical rules and national work safety regulations.

Mechanical mounting

For mechanical mounting, a person is considered competent when he/she has the expertise and experience in the relevant field and is sufficiently familiar with the application of the protective device on the machine that he/she can assess its operational safety status.

Electrical installation

For electrical installation, a person is considered competent when he/she has the expertise and experience in the relevant field and is sufficiently familiar with the application of the protective device on the machine that he/she can assess its operational safety status.

Configuration

For configuration, a person is considered competent when he/she has the expertise and experience in the relevant field and is sufficiently familiar with the application of the protective device on the machine that he/she can assess its work safety aspects.

Commissioning

For commissioning, a person is considered competent when he/she has the expertise and experience in the relevant field and is sufficiently familiar with the application of the protective device on the machine that he/she can assess its operational safety status.

Operation and maintenance

For operation and maintenance, a person is considered competent when he/she has the expertise and experience in the relevant field and is sufficiently familiar with the application of the protective device on the machine and has been instructed by the machine operator in its operation.

3 Product description

3.1 Setup and function

The EnforceKey Single Door functional safety system is intended for accessing locked hazardous areas on a regular basis by allowing personnel to enter them safely for brief periods. It ensures that the hazardous area is monitored until the person exits. The machine/plant can only be restarted once the hazardous area has been securely locked again and the EnforceKey Single Door has been reset.

Machine or plant requirements

- Locked hazardous area that is secured by equipment such as physical guards
- Only one point of access via a safety door
- Machine issues a stop signal Alternatively: A machine on which the dangerous state can be brought to a standstill within five seconds
- The hazardous area is visible from the entry module. Alternatively:
 - Part of the hazardous area is visible from the clearance module before the operator checks out.
 - The rest of the hazardous area is visible from the entry module before the reset is performed.
 - The route from the clearance module to the entry module is designed in such a way that the operator cannot fail to see anyone entering the hazardous area.

Figure 1: Example of access protection with the EnforceKey Single Door

- ① Control unit
- 2 Entry module with reset button
- ③ Clearance module

④ Blind spot

In the example shown here, the location of the clearance module forces the operator to check the area that cannot be seen from the reset button position.

The functional safety system implements a monitored safety procedure. This safety procedure is made up of an access sequence and an exit sequence. The access sequence and the exit sequence are based on operator interaction with an entry module and a clearance module. The operator interacts with the modules via an electronic key (for detailed information, see "Entering the hazardous area, working in the hazardous area, and exiting the hazardous area", page 51).

Access sequence

The functional safety system prevents anyone from accessing the hazardous area until the access sequence has been completed.

- 1 The operator removes the key from the entry module.
- 2 The safety relay switches to the OFF state.
- 3 As soon as the connected Standstill Monitor signals that the machine has stopped, the safety locking device is unlocked. ¹⁾
- 4 The hazardous area can now be entered safely without any risk of the machine accidentally restarting.

Exit sequence

By means of the exit sequence, the functional safety system forces the operator to check that there is no one left inside the hazardous area before he or she exits.

- 1 The operator checks whether there is anyone inside the hazardous area. If the hazardous area is clear, the operator uses the key to check out on the clearance module.
- 2 The operator closes the access door and reinserts the key in the entry module.
- 3 The safety locking device connected to the functional safety system locks the door.
- 4 The operator checks whether there is anyone inside the hazardous area that is visible from the entry module. If the hazardous area is clear, the operator may reset the protective device.

NOTE

The machine can only be restarted once the safety procedure has been completed. The restart is not included as part of the functional safety system.

1) Alternatively, the system can be wired so that the safety locking device is unlocked after five seconds.

3.1.1 Structure of the EnforceKey Single Door

Figure 2: Structure of the EnforceKey Single Door

- ① Components of the functional safety system
- 2 Control unit
- ③ Entry module
- (4) Clearance module
- (5) Application-dependent components
- 6 Hazardous area with access door
- ⑦ Safety locking devices (standard wiring option)
- (8) Safety locking device and safety switch (ECO wiring option)
- (9) Emergency stop pushbutton (optional)

3.1.2 Components of the EnforceKey Single Door

Control unit

Figure 3: Control unit

The control unit contains:

- Power supply unit for all components and connected modules
- The safety controller with the logic for the functional safety system
- Safety relay
- Terminal strip for the voltage supply, sensors, and actuators

Entry module

Figure 4: Entry module

The entry module contains:

- LED (green): Safety relay status
- Illuminated reset button (blue)
- LED (white): Safety sequence status
- Key reader
- 2 LEDs for status and diagnostics (located at bottom, not visible in figure)

Clearance module

Figure 5: Clearance module

The clearance module contains:

- LED (white): Safety sequence status
- Key reader
- 2 LEDs for status and diagnostics

Key

The key is taught in at the entry module and the clearance module (see "Teaching in the key", page 47). This makes it unique and non-interchangeable.

Figure 6: Key

3.1.3 Application-dependent components

The functional safety system requires further components to properly realize the safety functions. These are not included with delivery.

3.1.3.1 Safety locking device and safety switch

Standard wiring option

For the standard wiring option, the functional safety system requires two safety locking devices (see figure 7, page 17).

Minimum requirements for each safety locking device:

- 1 positive opening normally closed contact for locking monitoring
- 1 positive opening normally closed contact for door monitoring
- Mechanical locking type

The functional safety system tests the positive opening normally closed contacts (for locking and door monitoring) for cross-circuits, short-circuits, and sequence errors.

We recommend using the i10 Lock or i110 Lock safety locking devices (see "Accessories", page 76).

ECO wiring option

For the ECO wiring option, the functional safety system requires one safety locking device and one safety switch (see figure 8, page 18).

Minimum requirements for the safety locking device:

- 2 positive opening normally closed contacts for locking monitoring
- 1 positive opening normally closed contact for door monitoring
- Mechanical locking type

The functional safety system tests the positive opening normally closed contacts (for locking and door monitoring) for cross-circuits, short-circuits, and sequence errors.

Minimum requirements for the safety switch:

- 1 N/O contact
- Logic:
 - Closed: Door closed
 - Open: Door open

The functional safety system tests the connected safety switch for short-circuits.

We recommend using the i10 Lock or i110 Lock safety locking devices and the RE1 safety switch (see "Accessories", page 76).

3.1.3.2 Standstill Monitor (optional)

If an external Standstill Monitor is connected to the functional safety system with the default factory configuration, the following minimum requirements apply: $^{2)}$

- 2 cut-off paths
- Output: Dual-channel equivalent electro-mechanical safety switch
- Logic:
 - Closed: Machine standstill detected
 - Open: No machine standstill detected

The functional safety system tests the connected Standstill Monitor for cross- and short-circuits, and also for discrepancy and sequence errors.

3.1.3.3 Emergency stop pushbutton (optional)

If an emergency stop pushbutton is connected to the functional safety system with the default factory configuration, the following minimum requirements apply:

• 2 positive opening normally closed contacts

²⁾ Alternatively, you can configure a fixed delay time.

The functional safety system tests the connected emergency stop pushbutton for crossand short-circuits, and also for discrepancy and sequence errors.

We recommend using the ES11 emergency stop pushbutton (see "Accessories", page 76).

If you do not connect an emergency stop pushbutton, you must configure the system accordingly (see "Configuring the emergency stop function", page 46).

3.1.3.4 Connecting cables

For the entry module, you will need 8-pin cables. For the clearance module, you will need 5-pin cables (see "Accessories", page 76).

3.2 Product characteristics

3.2.1 Wiring options: With or without Standstill Monitor

The functional safety system can be operated with or without a Standstill Monitor.

Wiring option: With Standstill Monitor

When the operator removes the key from the entry module, the functional safety system waits for a stop signal from the machine. If the machine sends this signal, the functional safety system opens the safety locking devices.

This type of wiring is configured by default at the factory (see "Configuring standstill monitoring", page 46).

Wiring option: Without Standstill Monitor, with delay time

DANGER

A Hazard due to lack of effectiveness of the protective device

Five seconds after you remove the key from the entry module, the functional safety system opens the safety locking devices.

- Make sure that the dangerous state of the machine is brought to a standstill within five seconds.
- Check that this is the case in all machine operating modes and operational statuses.

3.2.2 Safety locking device wiring

The functional safety system can be used as follows:

- On a door with two safety locking devices
- On a door with one safety locking device and one safety switch

Standard wiring option

With the standard wiring option, two safety locking devices with integrated door monitoring are connected to the system. Together, the safety locking devices create a dualchannel system for the locking and door monitoring functions.

If two safety locking devices are used, a **performance level** of up to **PL e** can be achieved for the locking function.

Figure 7: Standard wiring option

- ① Control unit
- 2 Entry module
- 3 Clearance module
- (4) Machine cut-off path
- Standstill Monitor (optional)
- 6 Locking function
- ⑦ Locking monitoring
- (8) Door monitoring (dual-channel)
- (9) Emergency stop (optional)

ECO wiring option

With the ECO wiring option, one safety locking device and one safety switch are connected to the system. Together, the two positive opening normally closed contacts of the safety locking device create a dual-channel system from an electrical perspective (but from a mechanical perspective, it remains a single-channel system). For the door monitoring function, the safety locking device and the safety switch create a system that is dual-channel from both an electrical and a mechanical perspective.

If one safety locking device and one safety switch are used, a **performance level** of up to **PL d** can be achieved for the locking function.

Figure 8: ECO wiring option

- ① Control unit
- 2 Entry module
- 3 Clearance module
- ④ Machine cut-off path
- (5) Standstill Monitor (optional)
- 6 Locking function
- ⑦ Locking monitoring
- (8) Door monitoring (channel 1)
- (9) Door monitoring (channel 2)
- 10 Emergency stop (optional)

3.2.3 Status indicators

(5) (4) $\overline{oldsymbol{\Theta}}$ • $(\mathbf{1})$ 2 < Θ θ M 3 SICK € € Ð • ⊕ M ⊕ Θ 4 (5)

Status indicators on the entry and clearance modules

Figure 9: Status indicators on the entry and clearance modules

- ① Safety relay status LED (green)
- 2 Reset required LED (blue)
- 3 Sequence status LED (white)
- ④ Diagnostics LED (for key teach-in)
- (5) Status LED (for key teach-in)

The diagnostics and status LEDs can be found on the bottom of the entry module and on the top of the clearance module.

Status indicators on the safety controller and the safety relay

Figure 10: Status indicators on the safety controller and the safety relay

- ① LEDs on the Flexi Soft CPU
- 2 LEDs on the Flexi Soft I/O modules
- 3 LED K1 (green) on safety relay
- ④ LED K2 (green) on safety relay

The safety controller and the safety relay are located inside the control cabinet.

3.3 Interfaces

Internal interfaces

The functional safety system features the following internal interfaces:

- Entry module interface
- Clearance module interface

External interfaces

The functional safety system features the following interfaces for external actuators and sensors:

Actuator interface:

This triggers the machine stop.

- Interface for machine Standstill Monitor: ³⁾ This confirms the machine stop.
- Door monitoring interface
- Interface for locking monitoring

³⁾ As an alternative to using a Standstill Monitor, you can configure a fixed delay time.

- Interface for locking function:
 - This opens or closes the locking device.
- Emergency stop interface

4 Project planning

4.1 Manufacturer of the machine

Hazard due to lack of effectiveness of the protective device

In the case of non-compliance, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- Use of the functional safety system requires a risk assessment. Check whether additional protective measures are required.
- Apart from the procedures described in this document, the components of the functional safety system must not be opened.
- The components of the functional safety system must not be tampered with or modified.
- Improper repair of the protective device can lead to a loss of the protective function. Do not carry out any repairs on the device components.

4.2 Company operating the machine

Hazard due to lack of effectiveness of the protective device

In the case of non-compliance, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- If changes are made to how the functional safety system is electrically integrated into the machine controller or if changes are made to the manner in which it is mechanically mounted, a new risk assessment must be carried out. The results of this risk assessment may require the entity operating the machine to meet the obligations of a manufacturer.
- Apart from the procedures described in this document, the components of the functional safety system must not be opened.
- The components of the functional safety system must not be tampered with or modified.
- Improper repair of the protective device can lead to a loss of the protective function. Do not carry out any repairs on the device components.

4.3 Requirements for the mounting locations

Visibility of the hazardous area

The following requirements must be met concerning the mounting locations for the entry and clearance modules:

• The entire hazardous area must be visible from the entry module before the reset is performed.

Or:

- The following combined requirements must all be met:
 - Part of the hazardous area is visible from the clearance module before the operator checks out.
 - The rest of the hazardous area is visible from the entry module before the reset is performed.
 - The route from the clearance module to the entry module is designed in such a way that the operator cannot fail to see anyone entering the hazardous area.

Entry module

- The entry module must be mounted outside the hazardous area (on a physical guard around a machine zone, for example) and as close as possible to the access door.
- The entry module must be mounted in such a way that it cannot be operated from inside the hazardous area. For example, take steps to prevent the operator from reaching through the fence.

Clearance module

- The clearance module must be mounted inside the hazardous area.
- The clearance module must be mounted in such a way that it cannot be operated from outside the hazardous area.

Control unit

 The control unit must be mounted so that it is exposed to as few vibrations as possible.

4.4 Integrating the equipment into the electrical control

4.4.1 Cabling requirements

All electrical equipment must be installed in conformity with EN 60204-1.

4.4.2 Machine that is to be protected

Machine actuators

The safety relay used is a UE10-2FG.

Check that this is sufficient to switch off the machine contactors (see UE10-2FG and UE12-2FG operating instructions, SICK part no. 8012349).

With Standstill Monitor

By default, the functional safety system is configured and wired at the factory to wait for a dual-channel enable signal from a Standstill Monitor before it deactivates the door locking device.⁴⁾

Minimum requirements:

- 2 cut-off paths
- Output: Dual-channel equivalent electro-mechanical safety switch
- Logic:
 - Closed: Machine standstill detected
 - Open: No machine standstill detected

The functional safety system tests the connected Standstill Monitor for cross- and short-circuits, and also for discrepancy and sequence errors.

Without Standstill Monitor, with delay time

Alternatively, the functional safety system can be configured without a Standstill Monitor. However, in this case, a delay time must be configured (see "Configuring standstill monitoring", page 46). When the operator removes the key from the entry module, the functional safety system opens the safety locking devices after five seconds.

DANGER

Hazard due to lack of effectiveness of the protective device

Five seconds after you remove the key from the entry module, the functional safety system opens the safety locking devices.

- Make sure that the dangerous state of the machine is brought to a standstill within five seconds.
- Check that this is the case in all machine operating modes and operational statuses.

4.4.3 Safety locking devices

Bypassing the protective device

In theory, it is possible for someone to obtain actuators for safety locking devices. They could then use these to tamper with the safety locking devices. In a worst-case scenario, a machine could start up while a door was still open.

Put organizational measures in place to prevent anyone from tampering with the safety locking devices.

Standard wiring for a locking function with a performance level of up to PL e

The functional safety system features interfaces for two safety locking devices. Both safety locking devices must be mounted and installed in accordance with their operating instructions.

Minimum requirements for each safety locking device:

- 1 positive opening normally closed contact for locking monitoring
- 1 positive opening normally closed contact for door monitoring
- Mechanical locking type

The functional safety system tests the positive opening normally closed contacts (for locking and door monitoring) for cross-circuits, short-circuits, and sequence errors.

Figure 11: Standard wiring option

- ① Control unit
- 2 Entry module
- 3 Clearance module
- (4) Machine cut-off path
- Standstill Monitor (optional)
- 6 Locking function
- ⑦ Locking monitoring
- (8) Door monitoring (dual-channel)
- (9) Emergency stop (optional)

If two safety locking devices are used, a performance level of up to PL e can be achieved for the locking function.

ECO wiring for a locking function with a performance level of up to PL d

i NOTE

In the case of the ECO wiring option, the locking function has a single channel for the mechanics (but a dual channel for the electrics). When assessing the machine as a whole, the manufacturer or entity operating the machine must decide whether faults can be satisfactorily ruled out as far as the mechanics of the safety locking device are concerned.

To prevent the locking bolt from being subjected to mechanical loads or overloads, suitable mechanical measures must be implemented.

With the ECO wiring option, only one safety locking device is used (see figure 8, page 18). However, a safety switch must also be connected. The safety locking device and the safety switch must be mounted and installed in accordance with their operating instructions.

Minimum requirements for the safety locking device:

- 2 positive opening normally closed contacts for locking monitoring
- 1 positive opening normally closed contact for door monitoring
- Mechanical locking type

The functional safety system tests the positive opening normally closed contacts (for locking and door monitoring) for cross-circuits, short-circuits, and sequence errors.

Minimum requirements for the safety switch:

- 1 N/O contact
- Logic:
 - Closed: Door closed
 - Open: Door open

The functional safety system tests the connected safety switch for short-circuits.

Figure 12: ECO wiring option

- ① Control unit
- 2 Entry module
- 3 Clearance module
- ④ Machine cut-off path
- Standstill Monitor (optional)
- 6 Locking function
- ⑦ Locking monitoring
- B Door monitoring (channel 1)
- Door monitoring (channel 2)
- 10 Emergency stop (optional)

If one safety locking device and one safety switch are used, a performance level of up to PL d can be achieved for the locking function.

4.4.4 Preventing unexpected startup

DANGER

Hazard due to unexpected starting of the machine

- Do not use the reset function on the functional safety system as a restart interlock.
- A separate restart interlock must be provided for the machine.

5 Transport and storage

5.1 Transport

WARNING

The use of unsuitable means of transport may damage the control cabinet or cause personal injury.

The control cabinet is only designed for transport using a lifting truck with sufficient carrying capacity.

Please note the following when transporting the control cabinet:

- The control cabinet must be switched off.
- No cables must be connected to the control cabinet.
- The control cabinet door must be closed.
- The stipulated transport position must be observed:
 - The control cabinet must be standing upright or lying horizontally.
 - Do not transport the control cabinet on its head or on its sides.
 - Protective equipment must be used to secure the control cabinet on the lifting truck so that it cannot tilt or tip over.
 - If you are transporting several control cabinets, they must always be placed upright one behind the other.
 - Never stack control cabinets one on top of the other for the purpose of transporting them.
- As a safety precaution, the equipment must be prevented from slipping on the lifting truck (by using an anti-slip mat, for example).
- Avoid jolts and impacts during transport to prevent any damage from occurring.

5.2 Storage

Please observe the storage conditions that apply to the individual system components (see "Control unit data sheet", page 60, see "Entry module data sheet", page 61, see "Clearance module data sheet", page 63).

6 Mounting

6.1 Safety

DANGER

Letter Hazard due to unexpected starting of the machine

In the case of non-compliance, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

Make sure that the dangerous state of the machine is and remains switched off.

Hazard due to lack of effectiveness of the protective device

In the case of non-compliance, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- Eliminate any temptation to tamper with the safety locking device by implementing measures such as the following:
 - Attach safety switches with a cover or with shielding, or ensure they are out of reach.
 - Cover the safety switch and the actuator with additional equipment or protect them against access. Cover the sensor and the actuator with additional equipment or protect them against access.
 - If possible, avoid mounting the system in a way that makes it easy to detach. Instead, use a tamper-proof mounting method.

6.2 Unpacking

- Check the components for completeness and the integrity of all parts, see "Scope of delivery", page 74.
- Please contact your SICK subsidiary should you have any complaints.

6.3 Mounting the control unit

Risk of injury due to falling components

- Do not do mounting work alone.
- Ask a second person to hold the components during mounting.

The fixing screws are not included with delivery.

Mounting sketch

Figure 13: Mounting sketch for the control unit (mm)

Mounting procedure

- Select a mounting location with minimum exposure to vibrations.
- ▶ Drill four holes Ø9 at the mounting location.
- Mount the bracket (4x M8 screws).
- Mount the control unit (control cabinet). Use at least four M8 screws.

6.4 Mounting the entry module

Mounting sketch

Figure 14: Mounting sketch for the entry module (mm)

Mounting procedure

The back of the housing is made up of two interconnected parts.

- Do not separate the parts that make up the back of the housing.
- Do not twist the parts that make up the back of the housing.

Eight M4 screws are required for the mounting. These are not included with delivery.

- 1. Drill the holes for the mounting (see figure 14).
- 2. Unscrew the top cover ① (4x M4 screws).
- 3. Carefully remove the top cover ①.
- 4. Unscrew the bottom cover ② (4x M4 screws).
- 5. Carefully remove the bottom cover 2. Do not pull off the cables.
- 6. Mount the back of the housing (③, ④) (8x M4 screws).
- 7. Mount the top cover ① (4x M4 screws).

- 8. Carefully reattach the bottom cover ② with the key holder. Place the cables in the designated slot without pinching them.
- 9. Mount the bottom cover 2 (4x M4 screws).

6.5 Mounting the clearance module

Mounting sketch

Figure 15: Mounting sketch for the clearance module (mm)

Mounting procedure

NOTE

i

Four M4 screws are required for the mounting. These are not included with delivery.

- 1. Drill the holes for the mounting (see figure 15).
- 2. Unscrew the cover ① (4x M4 screws).
- 3. Carefully remove the cover ① with the key holder. Do not pull off the cables.
- 4. Mount the back of the housing 2 (4x M4 screws).
- 5. Carefully reattach the cover ① with the key holder.
- 6. Place the cables in the designated slot without pinching them.
- 7. Mount the cover ① (4x M4 screws).

NOTE

i

If possible, mount the clearance module so that the opening of the key holder points downward. This means that the key cannot be left behind in the key holder, thereby preventing the system from switching to the safe state unnecessarily.

7 Electrical installation

7.1 Safety

DANGER

lacksquare Hazard due to electrical voltage

Hazard due to unexpected starting of the machine

- Make sure that the functional safety system and the machine to which it is connected remain de-energized throughout the entire electrical installation work.
- Make sure that the dangerous state of the machine is and remains switched off.
- Make sure that the outputs of the safety relays have no effect on the machine during the electrical installation work.
- The functional safety system does not feature a power supply isolation device for the 230 V AC supply voltage. This must be provided by the manufacturer or entity operating the machine.

7.2 Block diagram

Figure 16: Block diagram

- ① Control unit
- 2 230 V AC/50 Hz supply voltage
- 3 Machine (actuators, EDM, Standstill Monitor)
- (4) Safety locking device 1
- (5) Safety locking device 2
- 6 Safety switch (alternative to safety locking device 2 with the ECO wiring option)
- ⑦ Entry module
- 8 Clearance module
- (9) Emergency stop pushbutton (optional)

7.3 Connecting the control unit to the system

Figure 17: Control unit terminal strips

Control unit terminal strips

Terminal	Description
X1	230 V AC/50 Hz supply voltage
X2	Connection for contactor, EDM, and application diagnostic outputs
ХЗ	Connection for safety locking device 1
X4	Connection for safety locking device 2 ¹⁾
X5	Connection for entry module
X6	Connection for clearance module
X7	Connection for emergency stop pushbutton
X8	Connection for machine stop signal (Standstill Monitor)

Table 2: Control unit terminal strips

¹⁾ With the ECO wiring option, a dual-channel safety switch can be connected to X4 instead of the second safety locking device. In this case, the second locking device monitor of safety locking device 1 must be connected (see table 5, page 36).

Terminal strip X1 – Supply voltage 230 V AC

Hazard due to electrical voltage

Hazard due to unexpected starting of the machine

- Make sure that the functional safety system and the machine to which it is connected remain de-energized throughout the entire electrical installation work.
- The functional safety system does not feature a power supply isolation device for the 230 V AC supply voltage. This must be provided by the manufacturer or entity operating the machine.

Terminal	Signal	I/0	Function
1	L	-	Line conductor 230 V AC
2	Ν	-	Neutral conductor 0 V AC
3	PE	-	Protective conductor

Table 3: Terminal strip X1 – Supply voltage 230 V AC for the control unit

Terminal strip X2 - Connection for contactor, EDM, and application diagnostic outputs

Terminal	Signal	I/O ²⁾	Function
1	Relay_13	I/0	Machine enabling current path 1 (N/O)
2	Relay_14	I/0	Machine enabling current path 1 (N/O)
3	Relay_23	I/0	Machine enabling current path 2 (N/O)
4	Relay_24	I/0	Machine enabling current path 2 (N/O)
5	EDM_out	0	EDM output, for integrating the feedback contacts of the external contactors $^{\rm 2)}$
6	EDM_in	I	EDM input, for integrating the feedback contacts of the external contactors ²⁾
7	Error_seq	0	Application diagnostic output for sequence errors
8	Error_hw	0	Application diagnostic output for hardware errors
9	0 V	-	GND supply voltage
10	0 V	-	GND supply voltage

Table 4: Terminal strip X2 – Connection for contactor, EDM, and application diagnostic outputs

1) I/O = Input/Output, always from the perspective of the control unit

²⁾ If EDM is not used, connections X2.5 and X2.6 must be connected by means of a jumper link.

Terminal	Signal	I/0 1)	Function	Wire color ²⁾
1	Door_Sw1_Ch1_test	0	Test output for door switch 1 $^{\rm 3)}$ of safety locking device 1	White
2	Door_Sw1_Ch1_in	I	Input for door switch 1 $^{3)}$ of safety locking device 1	Brown
3	Door_Lock1_Ch2_test	0	Test output for locking device monitor 1 $^{3)}$ of safety locking device 1	Green
4	Door_Lock1_Ch2_in	I	Input for locking device monitor 1 ³⁾ of safety locking device 1	Yellow
5	Door_Unlock_Ch1	0	Output for controlling the unlocking solenoids of safety locking device 1	Gray
6	0 V	-	GND supply voltage for the unlocking solenoids of safety locking device 1	Pink
7	n.c.	-	Not assigned (used for wire no. 7 if an 8-pin supply cable is used)	Blue
8	n.c.	-	Not assigned (used for wire no. 8 if an 8-pin supply cable is used)	Red

Terminal strip X3 – Connection for safety locking device 1

Table 5: Terminal strip X3 – Connection for safety locking device 1

¹⁾ I/O = Input/Output, always from the perspective of the control unit

²⁾ Applies to the cables recommended as accessories

3) Normally closed

Terminal strip X4 with the standard wiring option – Connection for safety locking device 2

Terminal	Signal	I/0 1)	Function	Wire color ²⁾
1	Door_Sw2_Ch2_test	0	Test output for door switch 1 $^{3)}$ of safety locking device 2	White
2	Door_Sw2_Ch2_in	I	Input for door switch 1 ³⁾ of safety locking device 2	Brown
3	Door_Lock2_Ch1_test	0	Test output for locking device moni- tor 1 ³⁾ of safety locking device 2	Green
4	Door_Lock2_Ch1_in	I	Input for locking device monitor 1 ³⁾ of safety locking device 2	Yellow
5	Door_Unlock_Ch2	0	Output for controlling the unlocking solenoids of safety locking device 2	Gray
6	0 V	-	GND supply voltage for the unlocking solenoids of safety locking device 2	Pink
7	n.c.	-	Not assigned (used for wire no. 7 if an 8-pin supply cable is used)	Blue
8	n.c.	-	Not assigned (used for wire no. 8 if an 8-pin supply cable is used)	Red

Table 6: Terminal strip X4 – Standard wiring option

¹⁾ I/O = Input/Output, always from the perspective of the control unit

2) Applies to the cables recommended as accessories

3) Normally closed
NOTE

i

With the ECO wiring option, a safety switch can be used instead of the second safety locking device (e.g., an RE1 magnetic safety switch see "Accessories", page 76). In this case, the second locking device monitor of safety locking device 1 must be connected.

Terminal strip X4 with the ECO wiring option – Connection for safety switch and safety locking device 1

Terminal	Signal	I/O 1)	Function	Wire color ²⁾
1	Door_Sw2_Ch2_test	0	Test output for door switch 1 $^{\mbox{\tiny 3)}}$ of safety switch	Brown
2	Door_Sw2_Ch2_in	I	Input for door switch 1 $^{3)}$ of safety switch	White
3	Door_Lock2_Ch1_test	0	Test output for locking device monitor 2 $^{3)}$ of safety locking device 1	Blue
4	Door_Lock2_Ch1_in	I	Input for locking device monitor 2 $^{3)}$ of safety locking device 1	Red
5	Door_Unlock_Ch2	0	Do not use	-
6	0 V	-	Do not use	-
7	n.c.	-	Not assigned	-
8	n.c.	-	Not assigned	-

Table 7: Terminal strip X4 – ECO wiring option

¹⁾ I/O = Input/Output, always from the perspective of the control unit

²⁾ Applies to the cables recommended as accessories

3) Normally closed

Terminal strip X5 - Connection for entry module

Terminal	Signal	I/O 1)	Function	Wire color ²⁾
1	Reset	I	Reset input	White
2	+24 V DC	-	24 V supply voltage for entry module	Brown
3	L_Entrance_Run	0	Signal for green LED that indicates the safety relay status	Green
4	L_Entrance_Reset	0	Signal for blue LED that indicates when a reset is required	Yellow
5	Key_Entrance_Ch1	I	Input for OSSD1	Gray
6	Key_Entrance_Ch2	I	Input for OSSD2	Pink
7	0 V	-	GND supply voltage for entry module	Blue
8	L_Entrance_Status	0	Signal for white LED that indicates the sequence status	Red

Table 8: Terminal strip X5 – Connection for entry module

1) I/O = Input/Output, always from the perspective of the control unit

²⁾ Applies to the cables recommended as accessories

Terminal	Signal	I/O 1)	Function	Wire color ²⁾
1	24 VDC	-	24 V supply voltage for clearance module	Brown
2	Key_Clearance_Ch1	I	Input for OSSD1	White
3	0 V	-	GND supply voltage for clearance module	Blue
4	Key_Clearance_Ch2	I	Input for OSSD2	Black
5	L_Clearance_Status	0	Signal for white LED that indicates the sequence status	Gray
6	n.c.	-	Not assigned	_

Terminal strip X6 – Connection for clearance module

Table 9: Terminal strip X6 – Connection for clearance module

1) I/O = Input/Output, always from the perspective of the control unit

²⁾ Applies to the cables recommended as accessories

Terminal strip X7 – Connection for emergency stop pushbutton

Terminal	Signal	I/0 ¹⁾	Function	Wire color ²⁾
1	E-Stop_Ch1_test	0	Test output for emergency stop push- button, channel 1	Brown
2	E-Stop_Ch1_in	I	Input for emergency stop pushbut- ton, channel 1	White
3	E-Stop_Ch2_test	0	Test output for emergency stop push- button, channel 2	Blue
4	E-Stop_Ch2_in	I	Input for emergency stop pushbut- ton, channel 2	Black

Table 10: Terminal strip X7 – Connection for emergency stop pushbutton

1) I/O = Input/Output, always from the perspective of the control unit

2) Applies to the cables recommended as accessories

NOTE

If you do not connect an emergency stop pushbutton to the functional safety system, you must install one jumper link between terminals X7.1 and X7.2 and another one between terminals X7.3 and X7.4.

Terminal	Signal	I/0 1)	Function
1	+24 V DC	-	24 V supply voltage
2	1of2_select_Mode0	I	Operation with delay time ²⁾
3	1of2_select_Mode1	I	Operation with Standstill Monitor ²⁾
4	M_Standstill_Ch1_test	0	Test output for Standstill Monitor, channel 1
5	M_Standstill_Ch1_in	I	Input for Standstill Monitor, channel 1
6	M_Standstill_Ch2_test	0	Test output for Standstill Monitor, channel 2
7	M_Standstill_Ch2_in	I	Input for Standstill Monitor, channel 1
8	n.c.	-	Not assigned

Terminal strip X8 – Connection for selecting wiring option and machine Standstill Monitor

Table 11: Terminal strip X8 – Connection for selecting wiring option and machine Standstill Monitor

1) I/O = Input/Output, always from the perspective of the control unit

2) The equipment is delivered with a jumper link already connected between X8.1 and X8.3. This activates the "with Standstill Monitor" wiring option. To switch to the "with delay time" wiring option, you must remove the jumper link and connect it between X8.1 and X8.2 instead (so that X8.3 becomes free).

7.4 Entry module device connection

Male 8-pin connector	Pin	Signal	I/O ¹⁾	Meaning	Wire color
	1	Reset	I	Reset signal	White
	2	24 V DC	-	24 V supply voltage for entry module	Brown
	3	L_Run	0	Signal for green LED that indicates the safety relay status	Green
	4	L_Reset	0	Signal for blue LED that indicates when a reset is required	Yellow
	5	OSSD1	I	Output OSSD1	Gray
5 6 7	6	OSSD2	I	Output OSSD2	Pink
	7	GND	-	GND supply voltage for entry module	Blue
	8	L_Status	0	Signal for white LED that indicates the sequence status	Red

Table 12: Pin assignment for the entry module device connection

¹⁾ I/O = Input/Output, from the perspective of the control unit

²⁾ Applies to the cables recommended as accessories

7.5 Clearance module device connection

Male 5-pin connector	Pin	Signal	I/O ¹⁾	Meaning	Wire color 2)
	1	24 V DC	-	24 V supply voltage for clearance module	Brown
2 1	2	OSSD1	I	Output OSSD1	White
5	3	GND	-	GND supply voltage for clearance module	Blue
	4	OSSD2	I	Output OSSD2	Black
3 4	5	L_Status	0	Signal for white LED that indicates the sequence status	Gray

Table 13: Pin assignment for the clearance module device connection

- 1) I/O = Input/Output, from the perspective of the control unit
- 2) Applies to the cables recommended as accessories

7.6 Connection diagrams

i

NOTE

The connection diagrams shown below are merely examples. The manufacturer or entity operating the machine is responsible for ensuring that the functional safety systems is integrated into the machine correctly (see "Project planning", page 22).

7.6.1 Standard wiring option

Figure 18: Connection diagram for voltage supply, safety relay, and application diagnostic outputs

- ① 230 V AC supply voltage
- 2 OSSDs
- 3 EDM
- ④ Application diagnostic outputs

Figure 19: Connection diagram for safety locking devices

- ① Safety locking device 1
- 2 Safety locking device 2

Figure 20: Connection diagram for entry and clearance modules

- ① Entry module
- 2 Clearance module

Figure 21: Connection diagram for emergency stop pushbutton and Standstill Monitor

- ① Emergency stop pushbutton
- 2 Standstill Monitor

7.6.2 ECO wiring option

Figure 22: Connection diagram for safety locking device and safety switch

- ① Safety locking device
- 2 Safety switch

8 Configuration

8.1 Safety

DANGER

Hazard due to electrical voltage

Hazard due to unexpected starting of the machine

- Make sure that the functional safety system and the machine to which it is connected remain de-energized throughout the entire configuration process.
 - Make sure that the dangerous state of the machine is and remains switched off.
- Make sure that the outputs of the safety relays have no effect on the machine during the electrical configuration work.

8.2 Configuring standstill monitoring

To configure whether the functional safety system (see table 11, page 39) is to be operated with or without a Standstill Monitor, you should install jumper links on the control unit accordingly.

8.2.1 Wiring option: Without Standstill Monitor, with delay time

DANGER

Hazard due to lack of effectiveness of the protective device

Five seconds after you remove the key from the entry module, the functional safety system opens the safety locking devices.

- Make sure that the dangerous state of the machine is brought to a standstill within five seconds.
- Check that this is the case in all machine operating modes and operational statuses.
- Remove the jumper link that was installed between terminals X8.1 and X8.3 at the factory.
- ▶ Install a jumper link between terminals X8.1 and X8.2.
- Terminal X8.3 is not used.

8.2.2 Wiring option: With Standstill Monitor

- Inside the control unit, there is a jumper link that was installed between terminals X8.1 and X8.3 at the factory.
- Terminal X8.2 is not used.

8.3 Configuring the emergency stop function

With the default factory configuration, an emergency stop pushbutton has to be connected to the functional safety system. To change the configuration so that the functional safety system can be operated without an emergency stop button, you should install jumper links on the control unit accordingly (see table 10, page 38).

- Install a jumper link between terminals X7.1 and X7.2.
- Install a jumper link between terminals X7.3 and X7.4.

9 Commissioning

9.1 Safety

DANGER

Hazard due to lack of effectiveness of the protective device

- Before commissioning the machine, make sure that the machine is first checked ► and released by qualified safety personnel.
- Only operate the machine with a perfectly functioning protective device.

DANGER

Dangerous state of the machine

During commissioning, the machine or the protective device may not yet behave as you have planned.

Make sure that there is no-one in the hazardous area during commissioning.

Hazard due to lack of effectiveness of the protective device

When changes are made to the machine, the effectiveness of the protective device may be affected unintentionally.

Whenever changes are made to the machine, to how the functional safety system is integrated, or to the operational and general conditions of the system, proceed as follows:

- Check the effectiveness of the protective device. ►
- Perform commissioning again in accordance with the information provided in this chapter.

Before initial commissioning can be performed, project planning, mounting, electrical installation and configuration must be completed in accordance with the following chapters:

- Project planning, page 22
- Mounting, page 29
- Electrical installation, page 33
- Configuration, page 46

In addition, initial commissioning can only be carried out once all the applicationdependent components (such as the safety locking devices) have been fully mounted. connected, and put into operation.

9.2 Teaching in the key

Key teach-in is a safety-related operation.

- 1. To prevent tampering, document the teach-in process.
- 2. Carry out regular checks to make sure that the original key is still being used.

I NOTE

- Exactly the same key is taught in on both the entry module and the clearance module. This means that only one key is ever active and valid for a particular functional safety system.
- The entry or clearance module will only recognize a key if it is inserted into the key holder completely.
- The key must not be removed from the key holder during the teach-in process.
- Only the most recently taught-in key is valid.
- Once keys have been taught in, they cannot be taught in again.
- The key teach-in process can be performed up to eight times. After that, the entry module or clearance module will not accept any more new keys.

There are two LEDs on the bottom and top of the entry module and clearance module respectively. These indicate the status during the teach-in process (see "Status indicators", page 19).

9.2.1 Teach-in sequence on entry module

Step	Status LED	Diagnostics LED		
Switch on the voltage supply for the entry module.	● Red	0		
Insert the new key into the key holder of the entry module. The module reads in the key.	- Green	- Yellow		
After approx. 10 seconds: The key has been read in.	- Green	Yellow		
Switch off the voltage supply for the entry module within five minutes.	0	0		
When the entry module is switched back on, it will recognize the key, which has now been taught in and is ready for use.				

Table 14: Teach-in sequence on entry module

9.2.2 Teach-in sequence on clearance module

Step	Status LED	Diagnostics LED		
Switch on the voltage supply for the clearance module.	● Red	0		
Insert the new key into the key holder of the clearance mod- ule. The module reads in the key.	🕀 Green	- Yellow		
After approx. 10 seconds: The key has been read in.	Green	Yellow		
Switch off the voltage supply for the clearance module within five minutes.	0	0		
When the clearance module is switched back on, it will recognize the key, which has now been taught in and is ready for use.				

Table 15: Teach-in sequence on clearance module

9.2.3 Possible errors during the teach-in sequence

The "Teach-in sequence failed" error will occur under the following conditions:

- If the key is removed from the key holder during the first 10 seconds of the teachin process.
 - Or:
- If the key is removed from the key holder while the module is waiting for the voltage supply to be switched off.
 Or:
- If the voltage supply is not switched off within five minutes of the teach-in process.

Status LED	Diagnostics LED	Meaning
₩ Red/green	0	 Teach-in sequence failed. The teach-in operation can be repeated. Reset the entry or clearance module. To do this, interrupt the voltage supply for at least three seconds. Reinsert the key in the key holder. Resume the teach-in sequence.
€ Red/green	- Yellow	Maximum number of keys taught in; no further teach-in opera- tions allowed
- Red/green	Yellow	Key has already been taught in on this module once and can- not be taught in again

Table 16: Errors that may be indicated by the LEDs during teach-in

9.3 Starting the EnforceKey Single Door

When you switch on the EnforceKey Single Door, it indicates the "sequence error" sequence status.

Action/Result	Кеу	Safety lock- ing device	Entry mod- ule	Clearance module
Sequence error after switch-on	-	Open	-) - 4 Hz	- ● - 4 Hz
Confirm that the hazardous area is clear. Briefly insert the key into the holder of the clearance module (for at least 0.5 s but no more than 2 s).	In the clear- ance module	Open	€ White	White
Exit the hazardous area quickly (within 60 s), ensuring that no one else enters. Close the door correctly. Make sure that the latch is able to engage.	With the operator	Open	÷€ White	● White
Reinsert the key into the key holder of the entry module.	In the entry module	Open	O White	O White
The latch closes.	In the entry module	Locked	€ Blue	
Make sure that the hazardous area is still clear. Press the reset button on the entry module.	In the entry module	Locked	O Blue	
The safety relay switches to the ON state. The machine can now be restarted.	In the entry module	Locked	● Green	

Table 17: Exiting the hazardous area

9.4 Checks

- Check the protective device as described below and in accordance with the applicable standards and regulations.
- Using the checklist in the appendix, check that the protective device on the machine is effective in all the operating modes that can be selected on the machine.
- If substantial alterations have been made to the machine or protective device, or if components have been changed or repaired, check the effectiveness of the protective device again.

lacksquare Hazard due to unexpected starting of the machine

Death or serious injury

Before carrying out the functional test, make sure that there is no one inside the hazardous area.

9.5 Validation

Do not put the machine into operation unless the validation process has been completed successfully. Only appropriately trained personnel are allowed to carry out final acceptance.

The following points must be checked as part of the validation process:

- Check that all the safety-related parts of the machine (wiring, connected sensors and control devices, configuration) conform to the relevant safety standards (e.g., EN 60204-1, EN 62061, or EN ISO 13849-1).
- Check the devices connected to the control unit in accordance with the notes provided by the checklist in the appendix.
- Uniquely identify all the connections on the control unit (connecting cables and plug connectors) clearly to prevent mix-ups.
- Fully document the results of the safety inspection (e.g., switch-off times and correct switching behavior in the case of every relevant operational status).

10 Operation

10.1 Safety

NOTE

This document does not provide instructions for operating the machine in which the functional safety system is integrated.

10.2 Regular inspection of the protective device by qualified safety personnel

- Check the machine following the inspection intervals specified in the national rules and regulations. This procedure ensures that any changes to the machine or tampering with the protective device are detected after initial commissioning.
- Check that the functional safety system is functioning properly at regular intervals and whenever a fault has occurred.
- If substantial alterations have been made to the machine or protective device, or if the safety switch has been changed or repaired, check the machine again.
- Check whether the machine always stops when a safety door is opened.
- Check all the cables of the functional safety system for damage.
- Check the protective device for signs of misuse or tampering.

Bypassing the protective device

In theory, it is possible for someone to obtain actuators for safety locking devices. They could then use these to tamper with the safety locking devices. In a worst-case scenario, a machine could start up while a door was still open.

 Put organizational measures in place to prevent anyone from tampering with the safety locking devices.

10.3 Entering the hazardous area, working in the hazardous area, and exiting the hazardous area

DANGER

Hazard due to lack of effectiveness of the protective device

Hazard due to unexpected starting of the machine

The safety sequence could be completed even though you have not left the hazardous area.

Someone else could be inside the hazardous area when you initiate the machine restart.

- On removing the key from the entry module, you are responsible for ensuring that the steps described below are followed.
- Keep the key with you at all times.
- Never give the key to anyone else.

Starting point

- The machine is operational and running.
- The access point is securely locked by means of the safety locking device.
- The key is in the entry module.

- The green LED on the entry module is lit continuously.
- The white LED on the entry module is OFF.

Entering the hazardous area

Action/Result	Кеу	Safety locking device	Entry module	Clearance mod- ule
The machine is operational and running.	In the entry mod- ule	Locked	● Green O White	O White
Remove the key. The safety relay switches to the OFF state.	With the operator	Locked	- Green O White	O White
The dangerous state of the machine is stopped.	With the operator	Locked	- Green O White	O White
The latch opens.	With the operator	Open	O Green → White 2 × at 1 Hz O White 2 s	• White
Open the door. Take the key with you. This guards against loss or misuse of the key.	With the operator	Open	O Green ● White	₩ White

Table 18: Entering the hazardous area

Working in the hazardous area

Action/Result	Кеу	Safety locking device	Entry module	Clearance mod- ule
It is now possible to work inside the hazardous area. The machine is unable to start up, even if the door is closed.	With the operator	Open	White	÷ White

Table 19: Working in the hazardous area

Exiting the hazardous area

Action/Result	Кеу	Safety locking device	Entry module	Clearance mod- ule
Make sure there is no one left inside the hazard- ous area.	With the operator	Open	White	-€- White
Confirm that the hazardous area is clear. Briefly insert the key into the key holder of the clear- ance module (for at least 0.5 s but no more than 10 s).	In the clearance module	Open	€ White	• White
Exit the hazardous area quickly (within 60 s), ensuring that no one else enters.	With the operator	Open	♥ White 2 × at1 HzO White 2 s	White
Close the door correctly. Make sure that the latch is able to engage.	With the operator	Open	- White	White
Reinsert the key into the key holder of the entry module.	In the entry mod- ule	Open	O White	O White
The latch closes.	In the entry mod- ule	Locked	-€- Blue	
Make sure that the hazardous area is still clear. Press the reset button on the entry module.	In the entry mod- ule	Locked	O Blue	

Table 20: Exiting the hazardous area

Action/Result	Кеу	Safety locking device	Entry module	Clearance mod- ule
The safety relay switches to the ON state. The machine can now be restarted.	In the entry mod- ule	Locked	● Green	

Table 20: Exiting the hazardous area

A machine start/restart can then be triggered. This step is not included as part of the functional safety system.

10.4 Possible errors during operation

DANGER

Hazard due to lack of effectiveness of the protective device

Cease operation if the cause of a malfunction has not been clearly identified.

• Take the machine out of operation if an error cannot be clearly identified and safely remedied.

Error, incorrect operation	Entry module	Clearance mod- ule	Solution
Key was accidentally removed. The door was not $^{1)}$ opened.	✤ White 2 × at1 HzO White 2 s	White	 Reinsert the key into the key holder of the entry module.
	÷ ● : Blue		 Press the reset but- ton. A machine restart can now be initiated.
The operator has not checked out on the clear- ance module. The checkout process has not been com- pleted correctly.	• White	÷ ● : White	 Repeat the entire process of exiting the hazardous area (see "Exiting the hazard- ous area", page 52).
The operator took more than 60 seconds to leave the hazardous area after checking out on the clear- ance module.	€ White at 4 Hz	€ White at 4 Hz	 Repeat the entire process of exiting the hazardous area (see "Exiting the hazard- ous area", page 52).
The safety locking device cannot be closed.	 → White 4 × at 4 Hz, then O 2 s 	• White	 Close the door correctly. Make sure that the actuators of the safety locking devices can engage.
Key not recognized.			 Check whether the key can be fully inserted into the key holder. If necessary, clean the key to remove any chips or other forms of contamination.

Table 21: Possible errors

10 OPERATION

Error, incorrect operation	Entry module	Clearance mod- ule	Solution
Key removed, but safety locking device does not open	÷€ Green		 No stop signal received from Stand- still Monitor Call service person- nel
Key removed, but machine does not stop			 Call service person- nel
The door is open, but the machine keeps running.			 Call service person- nel

Table 21: Possible errors

 $^{1)}$ $\,$ Once the door has been opened, the complete sequence must be performed.

11 Troubleshooting

11.1 Safety

This chapter describes how you can identify and remedy faults that interrupt the function.

DANGER

Hazard due to lack of effectiveness of the protective device

Cease operation if the cause of a malfunction has not been clearly identified.

• Take the machine out of operation if an error cannot be clearly identified and safely remedied.

11.2 LEDs

The component LEDs indicate statuses and faults.

Entry module

LEDs	Status	Meaning
Safety relay status (green)	•	Safety relay set to the ON state, machine run- ning
	€ 1 Hz	Safety relay set to the OFF state, machine stopping
	0	Safety relay set to the OFF state, machine is in the safe state
Reset required (blue)	0	No reset required
	€ 1 Hz	Reset required
Sequence status (white)	0	Safety sequence not active
	•	Safety sequence active
	-€: 2 × at 1 Hz, O 2 s	Waiting for door to be opened or closed
	- ● : 1 Hz	Key can be inserted into key holder
	- ● - 4 Hz	Sequence error or hardware error ¹⁾
		Fault on door locking device

Table 22: Meaning of the LEDs on the entry module

¹⁾ You can tell whether it is a sequence error or a hardware error by referring to the Error_seq and Error_hw output signals (see table 4, page 35).

Clearance module

LEDs	Status	Meaning
Sequence status (white)	0	Safety sequence not active
	•	Safety sequence active

Table 23: Meaning of the LEDs on the clearance module

LEDs	Status	Meaning
	₩ 1 Hz	Key can be inserted into key holder in order to check out
	- ● - 4 Hz	Sequence error or hardware error ¹⁾

Table 23: Meaning of the LEDs on the clearance module

1) You can tell whether it is a sequence error or a hardware error by referring to the Error_seq and Error_hw output signals (see table 4, page 35).

Safety relay in the control unit

LEDs	Status	Meaning
K1 (green)	0	Channel 1 not connected
	•	Channel 1 connected
K2 (green)	0	Channel 2 not connected
	•	Channel 2 connected

Table 24: Meaning of the safety relay LEDs

Flexi Soft safety controller

The meanings of the LEDs on the Flexi Soft safety controller are explained in the "Flexi Soft Modular Safety Controller Hardware" operating instructions (SICK part no. 8012477).

11.3 Status and processes

The diagram below shows the different statuses and the processes that trigger them.

Figure 23: Status and processes

11.4 Advanced diagnostics

For information about Flexi Soft Designer diagnostics, please see the "Flexi Soft in the Flexi Soft Designer Configuration Software" operating instructions (SICK part no. 8012479).

11.5 Replacing individual components

Individual components

The entry module must be replaced in its entirety. It must not be opened.

The clearance module must be replaced in its entirety. It must not be opened.

The key must be replaced in its entirety and the new one taught in.

Control unit

The Flexi Soft modules in the control unit can be replaced with modules of the same type. The configuration is saved in the system plug.

The system plug cannot be replaced.

The safety relay can be replaced with a safety relay of the same type.

12 Decommissioning

12.1 Disposal

Always dispose of serviceableness devices in compliance with local/national rules and regulations with respect to waste disposal.

We would be pleased to be of assistance on the disposal of this device. Contact us.

13 Technical data

13.1 Data sheet for the EnforceKey Single Door

	EnforceKey Single Door	
Safety-related parameters ¹⁾		
SIL claim limit	SILCL3 (EN 62061) 2)	
Performance level	PL e (EN ISO 13849-1) 2) 4)	
Category	Category 4 (EN ISO 13849-1) 2)	
PFH _D ³⁾	1.85 × 10 ⁻⁸ (EN ISO 13849)	
T _M (mission time)	20 years (EN ISO 13849)	
Response times ³⁾		
Safe stop (opening of door/latch)	60 ms	
Safe Stop (removal of key)	100 ms	
Maximum time for exiting the hazardous area after checking out	60 s	

Table 25: Data sheet for the EnforceKey Single Door

- $^{\rm 1)}$ $\,$ For detailed information on the safety configuration of your machine, please consult your relevant SICK subsidiary.
- ²⁾ The achievable safety-related parameter is dependent on the application.
- Without external components (such as safety locking devices, emergency stop pushbutton, Standstill Monitor)
- ⁴⁾ In the case of the ECO wiring option, where there is only one safety locking device, PL d is the maximum performance level that can be achieved for the locking function.

i NOTE

Subsequent sections of this chapter contain some example calculations for working out what performance level can be achieved (see "Example calculations for safety functions", page 66).

13.2 Control unit data sheet

	Control unit
Electrical data	
Supply voltage V _S	100 V AC 240 V AC 50 Hz 60 Hz/1 phase
Power consumption	50 VA
Power output	
P _{Sum1} 1)	≤ 32 W
P _{Sum2} ²⁾	≤ 32 W
Terminals (voltage supply and PE)	
Usable wire cross-section, flexible	0.08 mm ² 4 mm ² AWG 28 AWG 10
Usable wire cross-section, rigid	0.08 mm ² 6 mm ²
Terminals (other)	
Usable wire cross-section	0.25 mm ² 1.5 mm ² AWG 26 AWG 16
Length of cable – modules, safety locking devices, emergency stop pushbutton	≤ 30 m

Table 26: Control unit data sheet

	Control unit
Inputs	
Filter time	12 ms
Discrepancy time monitoring (only in the case of Standstill Monitor, emergency stop pushbut- ton, entry module, and clearance module)	32 ms
Flexi Soft outputs	See "Flexi Soft Modular Safety Controller Hard- ware" operating instructions (SICK part no. 8012477)
Safety relay outputs	
Enabling current paths (N/O), safety-related	2
Contact type	Positively guided
Contact rating for enabling current path (13, 14) (23, 24)	
AC switching voltage	10 V 250 V
DC switching voltage	10 V 250 V
Switching current	10 mA 6 A
AC switching capacity	3 VA 1,500 VA
DC switching capacity	3 W 200 W
Utilization category in compliance with EN 60947-5-1	
AC-15	U_{e} = 230 V AC, I_{e} = 3 A
DC-13	U _e = 24 V DC, I _e = 4 A
gL contact fuse or circuit breaker with charac- teristic B or C	6 A
Mechanical service life	10 ⁷ Switching operations
Electrical service life (at 230 V AC, $\cos Z = 1$)	10 ⁵ Switching operations
Rated impulse withstand voltage U_{imp}	4 kV
Overvoltage category	II
Rated voltage	300 V AC
Test voltage U _{eff} 50 Hz	1.2 kV
Ambient data	
Ambient operating temperature	0 °C +45 °C
Enclosure rating	IP 65 (EN 60529)
Storage temperature	-25 °C +70 °C
Air humidity (non-condensing)	10% 75% (95% < 24 h)
EMC	According to EN 61000-6-4

Table 26: Control unit data sheet

 Sum1 = sum of power consumed by safety locking device 1 + safety locking device 2 + sequence error output

²⁾ Sum2 = sum of power consumed by sequence error output + hardware error output

13.3 Entry module data sheet

	Entry module
Safety-related characteristic data ¹⁾	

Table 27: Entry module data sheet, safety-related characteristic data

	Entry module	
SIL claim limit	SILCL3 (EN 62061)	
Performance level	PL e (EN ISO 13849-1)	
Category	Category 4 (EN ISO 13849-1)	
PFH _D for key recognition	14 × 10 ⁻⁹ (EN ISO 13849)	
T _M (mission time)	20 years (EN ISO 13849)	
Туре	Type 4 (EN ISO 14119), actuator with high cod- ing level	
Safe state when a fault occurs	At least one safe output (OSSD) is in the OFF state.	
Electrical safety		
Rated impulse withstand voltage U _{imp}	1,500 V	
Contamination rating	3	
Rated insulation voltage U _I	32 V	
Cable capacitance	400 nF (Out A and Out B)	
Device fuse	2 A	

Table 27: Entry module data sheet, safety-related characteristic data

¹⁾ For detailed information on the safety configuration of your machine/plant, please consult your SICK subsidiary.

	Entry module	
Operating data		
Current consumption (without load)	65 mA	
Supply voltage V _S	19.2 V DC 28.8 V DC	
Voltage supply	Class 2 SELV	
Response time (removal of key)	40 ms	
Response time in the event of internal errors	40 ms	
Risk time	80 ms	
Time delay before availability	2.5 s	
Minimum distance between two devices	200 mm	
Material		
Housing	PVC, PC	
Кеу	PVC	
Dimensions	See dimensional drawing	
Inputs		
Green LED	≤ 15 mA	
Blue LED	≤ 15 mA	
White LED	≤ 15 mA	
Outputs		
2 OSSDs (OSSD1 and OSSD2)	2 × PNP, 100 mA max., protected against short-circuits and overloads	
Switching current		
ON state	100 mA	
OFF state	< 500 µA	

Table 28: Entry module data sheet

	Entry module	
Switching voltage		
ON state	21 V DC 24 V DC	
OFF state	0 V DC 2 V DC	
Ambient data		
Ambient operating temperature	-10 °C +70 °C	
Enclosure rating	IP 67 (EN 60529)	
Air humidity (non-condensing)	10% 75% (95% < 24 h)	
Vibration resistance	0.35 mm/10-55 Hz (IEC 60068-2-6)	
Shock resistance		
Continuous shock	10 g, 16 ms (IEC 60068-2-27)	
Single shock	30 g, 11 ms (IEC 60068-2-27)	
EMC	According to EN 61000-6-4	
System connection		
Connection type	M12 plug connector (8-pin)	
Length of cable	≤ 30 m	

Table 28: Entry module data sheet

13.4 Clearance module data sheet

	Clearance module	
Safety-related characteristic data 1)		
SIL claim limit	SILCL3 (EN 62061)	
Performance level	PL e (EN ISO 13849-1)	
Category	Category 4 (EN ISO 13849-1)	
PFH _D for key recognition	14 × 10 ⁻⁹ (EN ISO 13849)	
T _M (mission time)	20 years (EN ISO 13849)	
Туре	Type 4 (EN ISO 14119), actuator with high cod- ing level	
Safe state when a fault occurs	At least one safe output (OSSD) is in the OFF state.	
Electrical safety		
Rated impulse withstand voltage U _{imp}	1,500 V	
Contamination rating	3	
Rated insulation voltage U _I	32 V	
Cable capacitance	400 nF (Out A and Out B)	
Device fuse	2 A	

Table 29: Clearance module data sheet, safety-related characteristic data

 $^{(1)}$ $\,$ For detailed information on the safety configuration of your machine/plant, please consult your SICK subsidiary.

	Clearance module
Operating data	
Current consumption (without load)	65 mA
Supply voltage V _S	19.2 V DC 28.8 V DC

Table 30: Clearance module data sheet, operating data

	Clearance module	
Voltage supply	Class 2 SELV	
Response time (removal of key)	40 ms	
Response time in the event of internal errors	40 ms	
Risk time	80 ms	
Time delay before availability	2.5 s	
Minimum distance between two devices	200 mm	
Material		
Housing	PVC	
Кеу	PVC	
Dimensions	See dimensional drawing	
Inputs		
White LED	≤ 15 mA	
Outputs		
2 OSSDs (OSSD1 and OSSD2)	2 × PNP, 100 mA max., protected against short-circuits and overloads	
Switching current		
ON state	100 mA	
OFF state	< 500 µA	
Switching voltage		
ON state	21 V DC 24 V DC	
OFF state	0 V DC 2 V DC	
Ambient data		
Ambient operating temperature	-10 °C +70 °C	
Enclosure rating	IP 67 (EN 60529)	
Air humidity (non-condensing)	10% +75% (95% < 24 h)	
Vibration resistance	0.35 mm/10-55 Hz (IEC 60068-2-6)	
Shock resistance		
Continuous shock	10 g, 16 ms (IEC 60068-2-27)	
Single shock	30 g, 11 ms (IEC 60068-2-27)	
EMC	According to EN 61000-6-4	
System connection		
Connection type	M12 plug connector (5-pin)	
Length of cable	≤ 30 m	

Table 30: Clearance module data sheet, operating data

13.5 Control unit dimensional drawing

Figure 24: Control unit dimensional drawing (mm)

13.6 Entry module dimensional drawing

Figure 25: Entry module dimensional drawing (mm)

13.7 Clearance module dimensional drawing

Figure 26: Clearance module dimensional drawing (mm)

13.8 Key dimensional drawing

Figure 27: Key dimensional drawing (mm)

13.9 Example calculations for safety functions

The example calculations illustrate how to calculate characteristic safety values for the functional safety system, including the external components. The example calculations are merely an aid to understanding and are not definitive.

To obtain definitive values, you must perform your own calculations for the application concerned.

13.9.1 Initiating a stop

Below is an example of how to calculate the performance level for the **initiating a stop** safety function when the following situations apply:

- Locking function failed
- Unplanned opening of the door

Figure 28: Diagram showing the "initiating a stop" safety function

- ① Locking function section
- 2 Logic section
- 3 Actuator section (contactors according to EN ISO 13849-1:2008 Table C.1: Nominal load)

Locking function section

The PFH_D value for the locking function section must be calculated on the basis of the characteristic values for the SICK i10-M0454 safety locking devices.

Characteristic value	Value	Comments
B10 _d	3,000,000 cycles	
n _{op}	4,200 cycles/year	12 cycles/day, 350 days/year (depending on application)
Category	4	2 channels, test pulses
DC	99%	Cross checking, dynamic test- ing, discrepancy time
CCF	75	Dependent on application

Table 31: Characteristic values for the SICK i10-M0454 safety locking devices (excerpt)

Calculating the $\ensuremath{\mathsf{PFH}}_{\ensuremath{\mathsf{D}}}$ value for the locking function section:

$$MTTF_{D} = \frac{B_{10d}}{0.1 \times n_{op}} = 7.143 \text{ Years, per channel}$$
$$MTTF_{D} = \frac{2}{3} \left[MTTF_{D,CH1} + MTTF_{D,CH2} - \frac{1}{\frac{1}{MTTF_{D,CH1}} + \frac{1}{MTTF_{D,CH2}}} \right] = 7.143 \text{ Years}$$

Limited to 2,500 years:

MTTF_D = 2,500 years

In accordance with "DGUV Test: Test Body Info 926 A4 Table K.2", the following applies: PFH_{D1} = $9.06 \times 10^{-10} = 0.906$ FIT

Logic section

The PFH_D value for the logic section can be taken from the characteristic values for the EnforceKey Single Door.

Characteristic value	Value	Comments
PFH _{D2}	1.85 × 10 ⁻⁸	= 18.5 FIT
Category	4	

Table 32: Characteristic values for the EnforceKey Single Door (excerpt)

Actuator section

The PFH_D value for the actuator section must be calculated on the basis of the characteristic values for the contactors according to EN ISO 13849-1:2008 Table C.1: Nominal load.

Characteristic value	Value	Comments
B10 _d	2,000,000 cycles	
n _{op}	4,200 cycles/year	= 12 cycles/day, 350 days/ year (depending on applica- tion)
Category	4	2 channels, test pulses
DC	99%	EDM used: redundant cut-off path with drive elements moni- tored by the logic and the test device. Positively guided con- tacts required
CCF	75	Dependent on application

Table 33: Characteristic values for the actuator section (contactors according to EN ISO 13849-1:2008 Table C.1: Nominal load)

Calculating the $\ensuremath{\mathsf{PFH}}_{\ensuremath{\mathsf{D}}}$ value for the actuator section:

$$MTTF_{D} = \frac{B_{10d}}{0,1 \times n_{op}} = 4.761 \text{ Years, per channel}$$
$$MTTF_{D} = \frac{2}{3} \left[MTTF_{D,CH1} + MTTF_{D,CH2} - \frac{1}{\frac{1}{MTTF_{D,CH1}} + \frac{1}{MTTF_{D,CH2}}} \right] = 4.761 \text{ Years, total}$$

Limited to 2,500 years:

MTTF_D = 2,500 years

In accordance with "DGUV Test: Test Body Info 926 A4 Table K.2", the following applies: $PFH_{D3} = 9.06 \times 10^{-10} = 0.906$ FIT

Calculating the overall $\ensuremath{\mathsf{PFH}}\xspace_D$ value for the safety function:

The overall PFH_D value is calculated by adding together the PFH_D values for the following sections:

- Locking function: PFH_{D1}
- Logic: PFH_{D2}
- Actuators: PFH_{D3}

$$PFH_{D} = \sum PFH_{D1,2,3} = 20,3 FIT = 2,03 \times 10^{-8}$$

According to EN ISO 13849-1:2008 Table 3, this results in performance level e.

13.9.2 Temporarily preventing access with the standard wiring option

Below is an example of how to calculate the performance level for the **temporarily prevent access** safety function when the following situation applies:

The standstill signal is monitored once the key is removed. The locking function is not deactivated until this signal is present.

Figure 29: Diagram showing the "temporarily prevent access" safety function (standard wiring option)

- 1 Standstill Monitor section
- Safety relay section
- 3 Logic section
- (4) Locking function section

Standstill Monitor section

The PFH_D value for the Standstill Monitor section can be taken from the characteristic values for the SICK MOC3SA Standstill Monitor.

Characteristic value	Value	Comments
PFH _{D1}	5×10^{-9}	= 5 FIT
Category	4	From data sheet

Table 34: Characteristic values for the SICK MOC3SA Standstill Monitor (excerpt)

Safety relay section

The PFH_D value for the safety relay section can be taken from the characteristic values for the SICK UE10-2 safety relay.

Characteristic value	Value	Comments
PFH _{D2}	7 × 10 ⁻¹⁰	= 0.7 FIT
Category	4	From data sheet, EDM con- nected

Table 35: Characteristic values for the SICK UE10-2 safety relay

Logic section

The PFH_D value for the logic section can be taken from the characteristic values for the EnforceKey Single Door.

Characteristic value	Value	Comments
PFH _{D3}	1.85 × 10 ⁻⁸	= 18.5 FIT
Category	4	

Table 36: Characteristic values for the EnforceKey Single Door (excerpt)

Locking function section

The PFH_{D4} value for the locking function section must be calculated on the basis of the characteristic values for the SICK i10-M0454 safety locking devices.

Characteristic value	Value	Comments
B10 _d	3,000,000 cycles	
n _{op}	4,200 cycles/year	= 12 cycles/day, 350 days/ year (depending on applica- tion)
Category	4	2 channels, test pulses
DC	99%	Cross checking, dynamic test- ing, discrepancy time
CCF	75	Dependent on application

Table 37: Characteristic values for the SICK i10-M0454 safety locking devices (excerpt)

Calculating the PFH_D value for the locking function section:

$$MTTF_{D} = \frac{B_{10d}}{0.1 \times n_{op}} = 7.143 \text{ Years, per channel}$$
$$MTTF_{D} = \frac{2}{3} \left[MTTF_{D,CH1} + MTTF_{D,CH2} - \frac{1}{\frac{1}{MTTF_{D,CH1}} + \frac{1}{MTTF_{D,CH2}}} \right] = 7.143 \text{ Years}$$

Limited to 2,500 years:

MTTF_D = 2,500 years

In accordance with "DGUV Test: Test Body Info 926 A4 Table K.2", the following applies: $PFH_{D4} = 9.06 \times 10^{-10} = 0.906$ FIT

Calculating the overall PFH_D value for the safety function:

The overall PFH_D value is calculated by adding together the PFH_D values for the following sections:

- Standstill Monitor: PFH_{D1}
- Safety relay: PFH_{D2}
- Logic: PFH_{D3}
- Locking function: PFH_{D4}

$$\mathsf{PFH}_{\mathsf{D}} = \sum \mathsf{PFH}_{\mathsf{D}1,2,3,4} = 25,1 \; \mathsf{FIT} = 2,51 \times 10^{-8}$$

According to EN ISO 13849-1:2008 Table 3, this results in performance level e.

13.9.3 Temporarily preventing access with the ECO wiring option

Below is an example of how to calculate the performance level for the **temporarily prevent access** safety function when the following situation applies:

The standstill signal is monitored once the key is removed. The locking function is not deactivated until this signal is present.

Figure 30: Diagram showing the "temporarily prevent access" safety function (ECO wiring option)

- ① Standstill Monitor section
- 2 Safety relay section
- 3 Logic section
- ④ Locking function section
- (5) Test channel for door monitoring

Standstill Monitor section

The PFH_D value for the Standstill Monitor section can be taken from the characteristic values for the SICK MOC3SA Standstill Monitor.

Characteristic value	Value	Comments
PFH _{D1}	5×10^{-9}	= 5 FIT
Category	4	From data sheet

Table 38: Characteristic values for the SICK MOC3SA Standstill Monitor (excerpt)

Safety relay section

The PFH_D value for the safety relay section can be taken from the characteristic values for the SICK UE10-2 safety relay.

Characteristic value	Value	Comments
PFH _{D2}	7 × 10-10	= 0.7 FIT
Category	4	From data sheet, EDM con- nected

Table 39: Characteristic values for the SICK UE10-2 safety relay (excerpt)

Logic section

The PFH_D value for the logic section can be taken from the characteristic values for the EnforceKey Single Door.

Characteristic value	Value	Comments
PFH _{D3}	1.85 × 10 ⁻⁸	= 18.5 FIT
Category	4	

Table 40: Characteristic values for the EnforceKey Single Door (excerpt)

Safety locking device section (including test channel for door switch)

The PFH_D value for the safety locking function section must be calculated on the basis of the characteristic values for the SICK i10-M0454 safety locking device and for the SICK RE13 safety switch.

Characteristic value	Value	Comments
B10 _d	3,000,000 cycles	
n _{op}	4,200 cycles/year	= 12 cycles/day, 350 days/ year (depending on applica- tion)

Table 41: Characteristic values for the SICK i10-M0454 safety locking device (excerpt)

Calculating the $\ensuremath{\mathsf{MTTF}}_{\ensuremath{\mathsf{D}}}$ value for the safety locking device

$$MTTF_{D,CH1} = \frac{B_{10d}}{0.1 \times n_{op}} = 7.143 \text{ Years, channel 1}$$

Characteristic value	Value	Comments
B10 _d	20,000,000 cycles	
n _{op}	4,200 cycles/year	= 12 cycles/day, 350 days/ year (depending on applica- tion)

Table 42: Characteristic values for the SICK RE13 safety switch (excerpt)

Calculating the $\ensuremath{\mathsf{MTTF}}_{\ensuremath{\mathsf{D}}}$ value for the door switch test channel

$$MTTF_{D,TE} = \frac{B_{10d}}{0.1 \times n_{op}} = 47.619 \text{ Years, test channel}$$

The test channel is limited to 100 years:

 $MTTF_{D,TE} = 100$ years

Calculating the $\ensuremath{\mathsf{MTTF}}_{\ensuremath{\mathsf{D}}}$ value for the locking function section

$$MTTF_{D} = \frac{2}{3} \left[MTTF_{D,CH1} + MTTF_{D,TE} - \frac{1}{\frac{1}{MTTF_{D,CH1}} + \frac{1}{MTTF_{D,TE}}} \right] = 7.144 \text{ Years}$$

Limited to 100 years: MTTF_D = 100 years

Characteristic values	Value	Comments
Category	2	1 channel, test channel
DC	90%	Monitored indirectly via posi- tion switch

Table 43: Characteristic values for the locking function section
Characteristic values	Value	Comments
CCF	75	Dependent on application

Table 43: Characteristic values for the locking function section

In accordance with "DGUV Test: Test Body Info 926 A4 Table K.1", the following applies: $PFH_{D4} = 2.29 \times 10^{-7} = 229 FIT$

Calculating the overall $\ensuremath{\mathsf{PFH}}\xspace_D$ value for the safety function:

The overall PFH_D value is calculated by adding together the PFH_D values for the following sections:

- Standstill Monitor: PFH_{D1}
- Safety relay: PFH_{D2}
- Logic: PFH_{D3}
- Locking function: PFH_{D4}

$$PFH_{D} = \sum PFH_{D1,2,3,4} = 253,2 FIT = 2,53 \times 10^{-7}$$

According to EN ISO 13849-1:2008 Table 3, this results in performance level d.

14 Ordering information

14.1 Scope of delivery

- 1 control unit
- 1 entry module
- 1 clearance module
- 1 key

14.2 EnforceKey Single Door

Name	Type code	Part number
EnforceKey Single Door	NFKS-S1	1081038

Table 44: Ordering information for the EnforceKey Single Door

15 Spare parts

15.1 Modules and spare parts

Description	Type code	Part number
Entry module	NFKR-E1	2085837
Clearance module	NFKR-B1	2085838
Кеу	NFKK-B1	2085839
Control unit	NFKC-S1	2084516

Table 45: Ordering information for modules and spare parts

15.2 System plug and modules of the Flexi Soft safety controller

Description	Type code	Part number
System plug for FX3-CPU0 or FX3-CPU1 Screw terminals	FX3-MPL000001	1043700
Main module	FX3-CPU000000	1043783
I/O module 8 safe inputs, 4 safe outputs, plug-in dual-level spring terminals	FX3-XTI084002	1044125
I/O module 8 safe inputs, 4 / 6 non-safe outputs, plug-in dual-level spring terminals	FX3-XTDS84002	1061777
Safety relay Plug-in screw terminals	UE10-2FG3D0	1043916

Table 46: Ordering information for the system plug and modules of the Flexi Soft safety controller

16 Accessories

16.1 Accessories

Part	Туре	Part number
i10 Lock safety locking devices	i10-M0454 Lock	6045055
i110 Lock safety locking devices	i110-M0454	6051602
RE1 non-contact safety switches – Magnetic safety switch	RE13-SAC	1059503
ES11 safety command devices – Emergency stop pushbutton	ES11-SA1A4	6051327

Table 47: Ordering information for accessories

16.2 Connectivity

Part	Type code	Part number
Female connector straight, 2.5 m cable, open end	DOL-1208-G2M5C	6058863
Female connector straight, 5 m cable, open end	DOL-1208-G05MC	6035621
Female connector straight, 7.5 m cable, open end	DOL-1208-G7M5C	6058864
Female connector straight, 10 m cable, open end	DOL-1208-G10MC	6035622
Female connector straight, 15 m cable, open end	DOL-1208-G15MC	6038559
Female connector straight, 20 m cable, open end	DOL-1208-G20MC	6038560
Female connector straight, 30 m cable, open end	DOL-1208-G30MC	6058865
Female connector angled, 2 m cable, open end	DOL-1208-W02MC	6035623
Female connector angled, 5 m cable, open end	DOL-1208-W05MC	6035624
Female connector angled, 10 m cable, open end	DOL-1208-W10MC	6035625

Table 48: Ordering information for M12 connecting cable, 8-pin (0.25 mm²) ⁵⁾

Part	Type code	Part number
Female connector straight, 2 m cable, open end	DOL-1205-G02MC	6025906
Female connector straight, 5 m cable, open end	DOL-1205-G05MC	6025907
Female connector straight, 10 m cable, open end	DOL-1205-G10MC	6025908
Female connector straight, 15 m cable, open end	DOL-1205-G15MC	6051946
Female connector straight, 20 m cable, open end	DOL-1205-G20MC	6050247

Table 49: Ordering information for M12 connecting cable, 5-pin (0.34 mm²) $^{5)}$

Part	Type code	Part number
Female connector straight, 30 m cable, open	DOL-1205-G30MC	6050248

Table 49: Ordering information for M12 connecting cable, 5-pin (0.34 mm²) ⁶⁾

Part	Type code	Part number
Female connector straight, 2 m cable, open end	DOL-0804-G02MC	6025894
Female connector straight, 5 m cable, open end	DOL-0804-G05MC	6025895
Female connector straight, 10 m cable, open end	DOL-0804-G10MC	6025896
Female connector straight, 15 m cable, open end	DOL-0804-G15MC	6038622
Female connector straight, 20 m cable, open end	DOL-0804-G20MC	6051148

Table 50: Ordering information for M8 connecting cable, 4-pin (0.34 mm²) $^{\rm 6)}$

5) Ambient operating temperature: Down to -30 °C with fixed installation

17 Annex

17.1 Compliance with EU directives

EU declaration of conformity (excerpt)

The undersigned, representing the following manufacturer herewith declares that the product is in conformity with the provisions of the following EU directive(s) (including all applicable amendments), and that the respective standards and/or technical specifications are taken as the basis.

Complete EU declaration of conformity for download

You can call up the EU declaration of conformity and the current operating instructions for the protective device by entering the part number in the search field at www.sick.com (part number: see the type label entry in the "Ident. no." field).

17.2 Checklist for initial commissioning and commissioning

Checklist for manufacturers/installers when installing the functional safety system

The details relating to the items listed below must be available no later than when the system is commissioned for the first time. However, these depend on the specific application (the requirements of which must be reviewed by the manufacturer/installer).

This checklist should be retained and kept with the machine documentation to serve as reference during recurring thorough checks.

This checklist is not a substitute for initial commissioning or periodic thorough checks by qualified safety personnel.

Inspection step	
Is access to the hazardous area/hazardous point only possible via the access door that is being secured by this system?	Yes 🗌 No 🗌
Have the safety locking devices/safety switches connected to the functional safety system been mounted in accordance with their respective operating instructions? And have they been protected to prevent manipulation?	Yes 🗌 No 🗌
Have all the following requirements been met?	Yes 🗌 No 🗌
 Part of the hazardous area is visible from the clearance module. The rest of the hazardous area is visible from the entry module. The route from the clearance module to the entry module is designed in such a way that the operator cannot fail to see anyone entering the hazardous area. 	
Have the components of the functional safety system and the connected safety locking devices/safety switches been properly mounted? And, once adjusted, have they been secured to prevent movement?	Yes 🗌 No 🗌
Is the entry module for resetting the protective device present and correctly installed?	Yes 🗌 No 🗌
Is the machine equipped with its own restart interlock and is this effective?	Yes 🗆 No 🗆
Have the outputs of the functional safety system been integrated as per the required PL/SILCL in accordance with EN ISO 13849-1/EN 62061? And does the integration method correspond to the circuit diagrams?	Yes 🗌 No 🗌
Have the enabling current paths of the safety relay been correctly integrated into the machine controller?	Yes 🗆 No 🗀

Table 51: Checklist for the manufacturer/installer

Checklist for initial commissioning and periodic thorough checks

All the items on this checklist must be successfully checked off as part of the initial commissioning process (see "Validation", page 50) before the machine is put into operation.

Prerequisites:

- The voltage supply of the functional safety system has been switched off.
- The machine is switched off.
- The access door is closed and locked.
- There is no key inserted in the entry or clearance module.
- The jumper link inside the control cabinet has been installed correctly (to configure the device with/without a Standstill Monitor).

Step num- ber	Inspection step	
1	 Switch on the voltage supply of the functional safety system. Open the access door. 	
	 ✓ The white LEDs on both modules flash at 4 Hz (sequence error active). ✓ The safety relay is in the OFF state. 	Yes 🗌 No 🗌
2	 Insert the key into the key holder of the clearance module briefly (for two to five seconds). 	
	 ✓ The white LED on the clearance module lights up continuously. ✓ The white LED on the entry module flashes twice at 1 Hz with a break of two seconds. 	Yes 🗆 No 🗆
You must con occur. You wil	nplete the next three steps within 60 seconds; otherwise, a sequence I then have to start again from step 2.	e error will
3	► Lock the machine access door from the outside.	
	\checkmark The white LED on the entry module flashes at 1 Hz.	Yes 🗆 No 🗆
4	Insert the key into the key holder of the entry module and leave it there.	
	 ✓ The safety locking device locks the door. ✓ The blue LED on the entry module starts to flash (at 1 Hz). 	Yes 🗌 No 🗌
5	 Use the blue reset button to reset the functional safety sys- tem. 	
	 ✓ The blue LED on the entry module goes out. ✓ The green LED on the entry module lights up continuously. ✓ The safety relay is in the ON state and the machine can now be started by the machine controller. ✓ The door is still locked. 	Yes 🗌 No 🗌
6	 Remove the key from the entry module. 	
	 The green LED on the entry module starts to flash (at 1 Hz). The safety relay switches to the OFF state and the machine stops. The green LED on the entry module goes out. The white LED on the entry module flashes twice at 1 Hz with a break of two seconds. The white LED on the clearance module lights up continuously. 	Yes 🗆 No 🗆
7	 Open the access door. 	
	 The white LED on the entry module lights up continuously. The white LED on the clearance module flashes at 1 Hz. 	Yes 🗆 No 🗆

Table 52: Checklist for initial commissioning and periodic thorough checks

18 List of figures

1.	Example of access protection with the EnforceKey Single Door	10
2.	Structure of the EnforceKey Single Door	.12
3.	Control unit	.12
4.	Entry module	.13
5.	Clearance module	.14
6.	Кеу	.14
7.	Standard wiring option	17
8.	ECO wiring option	.18
9.	Status indicators on the entry and clearance modules	. 19
10.	Status indicators on the safety controller and the safety relay	.20
11.	Standard wiring option	25
12.	ECO wiring option	.26
13.	Mounting sketch for the control unit (mm)	30
14.	Mounting sketch for the entry module (mm)	31
15.	Mounting sketch for the clearance module (mm)	32
16.	Block diagram	.33
17.	Control unit terminal strips	34
18.	Connection diagram for voltage supply, safety relay, and application diagnostic	
	outputs	41
19.	Connection diagram for safety locking devices	.42
20.	Connection diagram for entry and clearance modules	.43
21.	Connection diagram for emergency stop pushbutton and Standstill Monitor	44
22.	Connection diagram for safety locking device and safety switch	.45
23.	Status and processes	.57
24.	Control unit dimensional drawing (mm)	.65
25.	Entry module dimensional drawing (mm)	65
26.	Clearance module dimensional drawing (mm)	.66
27.	Key dimensional drawing (mm)	66
28.	Diagram showing the "initiating a stop" safety function	.67
29.	Diagram showing the "temporarily prevent access" safety function (standard wi	r-
	ing option)	69
30.	Diagram showing the "temporarily prevent access" safety function (ECO wiring	
	option)	71

19 List of tables

1.	Available documents	6
2.	Control unit terminal strips	34
3.	Terminal strip X1 – Supply voltage 230 V AC for the control unit	35
4.	Terminal strip X2 – Connection for contactor, EDM, and application diagnostic of	out-
_	puts	.35
5.	Terminal strip X3 – Connection for safety locking device 1	.36
6.	Terminal strip X4 – Standard wiring option	.36
7.	Terminal strip X4 – ECO wiring option	.37
8.	Terminal strip X5 – Connection for entry module	.37
9.	Terminal strip X6 – Connection for clearance module	.38
10.	Terminal strip X7 – Connection for emergency stop pushbutton	.38
11.	Terminal strip X8 – Connection for selecting wiring option and machine Standst	.ill
	Monitor	.39
12.	Pin assignment for the entry module device connection	.39
13.	Pin assignment for the clearance module device connection	.40
14.	Teach-in sequence on entry module	48
15.	Teach-in sequence on clearance module	48
16.	Errors that may be indicated by the LEDs during teach-in	.49
17.	Exiting the hazardous area	.49
18.	Entering the hazardous area	.52
19.	Working in the hazardous area	.52
20.	Exiting the hazardous area	.52
21.	Possible errors	. 53
22.	Meaning of the LEDs on the entry module	55
23.	Meaning of the LEDs on the clearance module	55
24.	Meaning of the safety relay LEDs	. 56
25.	Data sheet for the EnforceKey Single Door	.60
26.	Control unit data sheet	.60
27.	Entry module data sheet, safety-related characteristic data	.61
28.	Entry module data sheet	.62
29.	Clearance module data sheet, safety-related characteristic data	63
30.	Clearance module data sheet, operating data	.63
31.	Characteristic values for the SICK i10-M0454 safety locking devices (excerpt)	67
32.	Characteristic values for the EnforceKey Single Door (excerpt)	.68
33.	Characteristic values for the actuator section	
	(contactors according to EN ISO 13849-1:2008 Table C.1: Nominal load)	68
34.	Characteristic values for the SICK MOC3SA Standstill Monitor (excerpt)	.69
35.	Characteristic values for the SICK UE10-2 safety relay	.69
36.	Characteristic values for the EnforceKey Single Door (excerpt)	.70
37.	Characteristic values for the SICK i10-M0454 safety locking devices (excerpt).	70
38	Characteristic values for the SICK MOC3SA Standstill Monitor (excerpt)	71
39	Characteristic values for the SICK UE10-2 safety relay (excernt)	71
40	Characteristic values for the Enforce Key Single Door (excerpt)	71
40. 41	Characteristic values for the SICK i10-M0454 safety locking device (excernt)	72
42	Characteristic values for the SICK RE13 safety switch (excerpt)	72
43.	Characteristic values for the locking function section	72
43. 11	Ordering information for the Enforce/Koy Single Deer	7/
44. 15	Ordering information for modules and spars parts	75
45.	Ordering information for the system plug and modules of the Elevi Soft safety a	.75
40.	troller	JII- 75
17	Uvilei	10
41. 10	Ordering information for M12 connecting cable 9 min (0.25 mm ²)	.10 76
4ð. 40	Ordering information for M12 connecting cable, 5-pin (0.25 mm ²)	10
49. 50	Ordering information for M9 connecting cable, 4 pin (0.34 mm ²)	01. 77
50.	ordening information for who connecting capie, 4-pin (0.34 mm ²)	. 1 1

51.	Checklist for the manufacturer/installer	.79
52.	Checklist for initial commissioning and periodic thorough checks	. 80

Australia Phone +61 3 9457 0600 1800 334 802 - tollfree E-Mail sales@sick.com.au

Austria Phone +43 22 36 62 28 8-0 E-Mail office@sick.at

Belgium/Luxembourg Phone +32 2 466 55 66 E-Mail info@sick.be

Brazil Phone +55 11 3215-4900 E-Mail marketing@sick.com.br

Canada Phone +1 905 771 14 44 E-Mail information@sick.com

Czech Republic Phone +420 2 57 91 18 50 E-Mail sick@sick.cz

Chile Phone +56 2 2274 7430 E-Mail info@schadler.com

China Phone +86 20 2882 3600 E-Mail info.china@sick.net.cn

Denmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Finland Phone +358-9-2515 800 E-Mail sick@sick.fi

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Germany Phone +49 211 5301-301 E-Mail info@sick.de

Hong Kong Phone +852 2153 6300 E-Mail ghk@sick.com.hk

Hungary Phone +36 1 371 2680 E-Mail office@sick.hu

India Phone +91 22 4033 8333 E-Mail info@sick-india.com Israel Phone +972 4 6881000 E-Mail info@sick-sensors.com

Italy Phone +39 02 274341 E-Mail info@sick.it

Japan Phone +81 3 5309 2112 E-Mail support@sick.jp

Malaysia Phone +6 03 8080 7425 E-Mail enquiry.my@sick.com

Mexico Phone +52 472 748 9451 E-Mail mario.garcia@sick.com

Netherlands Phone +31 30 2044 000 E-Mail info@sick.nl

New Zealand Phone +64 9 415 0459 0800 222 278 - tollfree E-Mail sales@sick.co.nz

Norway Phone +47 67 81 50 00 E-Mail sick@sick.no

Poland Phone +48 22 539 41 00 E-Mail info@sick.pl

Romania Phone +40 356 171 120 E-Mail office@sick.ro

Russia Phone +7 495 775 05 30 E-Mail info@sick.ru

Singapore Phone +65 6744 3732 E-Mail sales.gsg@sick.com

Slovakia Phone +421 482 901201 E-Mail mail@sick-sk.sk

Slovenia Phone +386 591 788 49 E-Mail office@sick.si

South Africa Phone +27 11 472 3733 E-Mail info@sickautomation.co.za South Korea Phone +82 2 786 6321 E-Mail info@sickkorea.net

Phone +34 93 480 31 00 E-Mail info@sick.es Sweden

Spain

Phone +46 10 110 10 00 E-Mail info@sick.se

Switzerland Phone +41 41 619 29 39 E-Mail contact@sick.ch

Taiwan Phone +886 2 2375-6288 E-Mail sales@sick.com.tw

Thailand Phone +66 2645 0009 E-Mail Ronnie.Lim@sick.com

Turkey Phone +90 216 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates Phone +971 4 88 65 878 E-Mail info@sick.ae

United Kingdom Phone +44 1727 831121 E-Mail info@sick.co.uk

USA Phone +1 800 325 7425 E-Mail info@sick.com

Vietnam Phone +84 945452999 E-Mail Ngo.Duy.Linh@sick.com

Further locations at www.sick.com

